首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;证明:|f’(x)|≤2a+b/2.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;证明:|f’(x)|≤2a+b/2.
admin
2022-10-09
98
问题
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;证明:|f’(x)|≤2a+b/2.
选项
答案
f(x)=f(c)+f’(c)(x-c)+f’(ξ)/2!(x-c)
2
,其中ξ介于c与x之间,分别令x=0,x=1,得f(0)=f(c)-f’(c)c+f"(ξ
1
)/2!c
2
,ξ
1
∈(0,c),f(1)=f(c)-f’(c)(1-c)+f"(ξ
2
)/2!(1-c)
2
,ξ
2
∈(0,c),两式相减,得f’(c)=f(1)-f(0)+f"(ξ
1
)/2!c
2
-f"(ξ
2
)/2!(1-c)
2
,利用已知条件,得|f’(c)|≤2a+b/2[c
2
+(1-C)
2
],因为c
2
+(1-c)
2
≤1,所以|f’(c)|≤2a+b/2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/17R4777K
0
考研数学三
相关试题推荐
设有n元二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,
设矩阵求矩阵P,使(AP)T(AP)为对角矩阵.
设二次型f(x1,x2,x3)=xTAx=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.求a,b的值;
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,-2,3)T+(1,2,-1)T,k为任意常数.令矩阵B=(α1,α2,α3,b+α3),证明方程组Bx=α1-α2有无
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,-2,3)T+(1,2,-1)T,k为任意常数.试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线
设f(x)为二阶连续可导,且,证明级数绝对收敛.
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设函数f(x)在区间[a,+∞)内连续,且当x>a时,fˊ(x)>l>0,其中l为常数.若f(a)<0,则在区间(a,a+)内方程f(x)=0的实根个数为()
设函数f(x)有连续的导数,且f(0)=0,f’(0)≠0,F(x)=∫0x(x2-t2)f(t)dt,且当n→0时,函数F’(x)与xk为同阶无穷小,则k等于().
随机试题
杀死炭疽芽孢杆菌的芽孢可采用1:2500________浸泡或干烤________℃3h。
e国电子商务网站的订单处理系统是建立在_________平台上,而数据库采用的________数据库,服务器是_______系列。该网站承诺_________小时送货到位,送货员的主要交通工具是_________。
Whatcouldbecuterthanyourpuppygivinghisdoggyfriendakissonthenose?Nothing,really.Butisyourdogactuallyplanti
A.月经黄体细胞B.妊娠黄体细胞C.胚泡滋养层细胞D.胎盘绒毛合体滋养层细胞妊娠10周前,血中孕激素是来自
某家长带一个2岁男孩来门诊检查身体发育各项情况。
背景资料:某水利枢纽工程2004年5月进行引水隧洞施工开挖时,隧洞处于高地应力区的脆硬完整岩体中,岩体中形成很高的初始应力。由于形成初始应力场的因素错综复杂,承包商在开挖前的实测和试验工作的深度不够,岩体开挖后出现自由边界,切向应力剧增,能量高度
按照《中华人民共和国会计法》的规定,记账人员与经济业务事项和会计事项的()人员的职责权限应当明确,并相互分离、相互制约。
皮日休《汴河怀古》诗:“尽道隋亡为此河,至今千里赖通波。若无水殿龙舟事,共禹论功不较多。”可见作者认为大运河的开凿()。
关于因特网中主机名和IP地址的描述中,正确的是()。
YouarerequiredtowritealetterforcomplaintaccordingtothefollowinginformationgiveninChinese.Donottranslateword
最新回复
(
0
)