首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上二阶连续可导且f(0)=f(1),又|f〞(χ)|≤M,证明:|f′(χ)|≤.
设f(χ)在[0,1]上二阶连续可导且f(0)=f(1),又|f〞(χ)|≤M,证明:|f′(χ)|≤.
admin
2019-08-23
69
问题
设f(χ)在[0,1]上二阶连续可导且f(0)=f(1),又|f〞(χ)|≤M,证明:|f′(χ)|≤
.
选项
答案
由泰勒公式得 f(0)=f(χ)+f′(χ)(0-χ)+[*](0-χ)
2
,ξ∈(0,χ), f(1)=f(χ)+f′(χ)(1-χ)+[*](1-χ)
2
,η∈(χ,1), 两式相减得f′(χ)=[*][f〞(ξ)χ
2
-f〞(η)(1-χ)
2
], 取绝对值得|f′(χ)|≤[*][χ
2
+(1-χ)
2
], 因为χ
2
≤χ,(1-χ)
2
≤1-χ,所以χ
2
+(1-χ)
2
≤1,故|f′(χ)|≤[*].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0zA4777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:方程组Ax=b的任一解均可由η,η+ξ1,…,η+ξn-r线性表出.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
证明:当χ>0时,arctanχ+.
设f(x)在x0处n阶可导,且f(n)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n≥2),证明:(1)当n为偶数且f(n)(x0)<0时f(x)在x0处取得极大值;(2)当n为偶数且f(n)(x0)>0时f(x)在x0处取得极小值.
证明:曲线上任一点的切线的横截距与纵截距之和为2.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在.证明:存在ξ1,ξ2∈[-a,a],使得
随机试题
美育,又称美感教育。下列选项中,不属于美育的主要任务的是()。
下列不属于乳及乳制品感官鉴别范畴的是()。
虚劳病变涉及五脏,以哪两脏为主
兴源公司与郭某签订钢材买卖合同,并书面约定本合同一切争议由中国国际经济贸易仲裁委员会仲裁。兴源公司支付100万元预付款后,因郭某未履约依法解除了合同。郭某一直未将预付款返还,必源公司遂提出返还货款的仲裁请求,仲裁庭适用简易程序审理,并作出裁决,支持废请求。
人在年轻的时候做事不能太________,你如果踏踏实实把每一件事做好,即使当时没________,它也在你的DNA里埋下了成功的种子,未来很多东西会被串在一起,发挥作用。填入划横线部分最恰当的一项是()。
火车“春运”期间,贩卖伪造火车票已经成为社会的一大公害。公安部门联合铁路运输企业对此进行了多次突击整治,捣毁了一批制造和贩卖伪造火车票的窝点,抓捕和惩治了一批以此牟取暴利的不法分子。但是,社会上贩卖伪造火车票的现象依然存在。如果上述断定为真,以下哪项不可
某Linux服务器上通过xinetd来对各种网络服务进行管理,该服务器上提供ftp服务,ftp服务器程序文件为/usr/bin/ftpd,ftp服务器的配置文件/etc/xinetd.d/ftp内容如下所示,目前该服务器属于开启状态:servic
Itwouldbeunwiseto______toomuchimportancetowhathesaid.
Thework______bythetimeyougetthere.
Asunflowerisasunflower.Amobilephoneisamobilephone.Butcanyou【S1】______thetwotodosomethingforyourlocal【S2】
最新回复
(
0
)