首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3×3阶矩阵A=[α,β1,β2],B=[β,β,β],其中α,β,β1,β2均为3维列向量,已知行列式|A|=2,则行列式|[α―β,2β1-β2,β1-2β2]|=______.
设3×3阶矩阵A=[α,β1,β2],B=[β,β,β],其中α,β,β1,β2均为3维列向量,已知行列式|A|=2,则行列式|[α―β,2β1-β2,β1-2β2]|=______.
admin
2017-06-14
87
问题
设3×3阶矩阵A=[α,β
1
,β
2
],B=[β,β,β],其中α,β,β
1
,β
2
均为3维列向量,已知行列式|A|=2,
则行列式|[α―β,2β
1
-β
2
,β
1
-2β
2
]|=______.
选项
答案
应填[*]
解析
根据行列式和矩阵的性质,得
|[α-β,2β
1
-β
2
,β
1
-2β
2
]|
=|[α,2β
1
-β
2
,β
1
-2β
2
]|-|[β,2β
1
-β
2
,β
1
-2β
2
]|
转载请注明原文地址:https://www.kaotiyun.com/show/0Zu4777K
0
考研数学一
相关试题推荐
证明方程lnx=x-e在(1,e2)内必有实根.
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=______,b=______.
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在ξ∈(0,1),使得f’(ξ)=1;
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0.证明:(Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
设X,Y是两个随机变量,且P|X≤1,Y≤1}=4/9,P{X≤1}=P{Y≤1}=5/9,则P{min(X,Y)≤1}=().
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分到84分之间的概率,如下表:
设二次型f(x1,x2,x3)=XTAX=ax12+222+(-232)+2bx32(b>0),其中二次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为求A;
随机试题
我国南方某放牧牛群出现食欲减退,精神不振,腹泻,便血,严重贫血,衰竭死亡。剖检见肝脏肿大、有大量虫卵结节确诊该病常用的粪检方法是()。
独活寄生汤的组成药物不包括
税务机关对已核发的税务登记证件,实行定期验证制度,( )验审一次。
阅读下面的文字,按要求作文。只有经历过,你才能得到最真实的体验,这是无法从别人的传授中获得的。生活中,我们的经历有喜有悲,有成功也有失败,但不管结果如何,这些经历都会给予我们一定的启示,都能丰富我们的人生,这是十分可贵的人生体验。结合自
根据下列资料,回答下列题。2011年8月份,社会消费品零售总额14705亿元,同比增长17.0%。其中,限额以上企业(单位)消费品零售额6902亿.元,增长22.1%。1—8月份,社会消费品零售总额114946亿元,同比增长16.9%。从环比看
英国格拉斯哥大学发布公报说,盐中含有的钠常被认为是增加心血管疾病风险的重要因素,但对于盐中另一种成分氯的作用,科学界一直少有研究。该校研究人员对近1.3万名高血压患者进行了长达35年的跟踪调查,结果发现,如果血液中的氯离子含量过低,则高血压患者的死亡风险会
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,A*x=0的基础解系为()
下列关于磁道的说法中,正确的是()。
A、 B、 C、 D、 BThemanisoperatingaforklift,whichisheavyequipment.Choice(A)confusesthesimil
Thisprocessofelaboratingaconceptandmovingtowardempiricalindicatorsisthecrucialstepin______analysis.
最新回复
(
0
)