首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3为3维向量空间R3的一个基,令β1=2α1+2kα3,β2=2α2,β3=2α1+(k+1)α3. 证明向量组β1,β2,β3也是R3的一个基;
设向量组α1,α2,α3为3维向量空间R3的一个基,令β1=2α1+2kα3,β2=2α2,β3=2α1+(k+1)α3. 证明向量组β1,β2,β3也是R3的一个基;
admin
2021-02-25
63
问题
设向量组α
1
,α
2
,α
3
为3维向量空间R
3
的一个基,令β
1
=2α
1
+2kα
3
,β
2
=2α
2
,β
3
=2α
1
+(k+1)α
3
.
证明向量组β
1
,β
2
,β
3
也是R
3
的一个基;
选项
答案
由于 [*] 而 [*] 所以β
1
,β
2
,β
3
线性无关,故β
1
,β
2
,β
3
也是R
3
的一个基.
解析
本题考查向量空间和线性方程组的综合题.解题所用的主要知识点有向量空间基与基变换公式及向量坐标的概念;向量组线性相关性的判定:n个n维向量线性无关
由它们排成的n阶行列式不为零;n元齐次线性方程组有非零解
其系数矩阵的秩r(A)<n.
转载请注明原文地址:https://www.kaotiyun.com/show/zi84777K
0
考研数学二
相关试题推荐
设函数,数列{xn}满足lnxn+<1。证明xn存在,并求此极限。[img][/img]
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1.则它的每个元素等于自己的代数余子式乘一1.
设四阶矩阵B满足,求矩阵B.
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:(1)aij=Aij←→ATA=E且|A|=1;(2)aij=一Aij←→ATA=E且|A|=一1.
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ线性无关。
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
用配方法化二次型f(χ1,χ2,χ3)=χ12+2χ1χ2+2χ1χ3-4χ32为标准形.
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
随机试题
根据抗辩原因可将票据抗辩分为
尚书固负若属耶?固:
CT辐射防护中,局部剂量测量常用X线管电流量为
Addison病患者哪一种激素水平会降低
复合平等理论是一种实现社会公平的设想,它认为任何一个领域的优势都不应当构成对整个社会的垄断,因此应将不同的社会领域尽可能地区隔开来,允许各个领域有各自的优胜者,但要防止某个领域的优势越界扩张到其他领域。根据上述定义,下列说法中最符合复合平等理论的是(
体罚是指对少年儿童或成人的身体进行责罚的行为。根据上述定义,下列属于体罚的是()。
实际上,工业可用的铜不应受已知的或未知的铜矿储量所限制。通过核物理上的一些方法把一种化学元素转变成另一种在现代已成为现实。因此像铜这样的自然资源的数量即使在大体上也是无法计算的,因为铜可以由其他金属制成。下面哪个如果正确,将对上文论点做出最强有力的
打开考生文件夹下的演示文稿yswg.ppt,按照下列要求完成对此文稿的修饰并保存。(1)在演示文稿开始处插入一张“只有标题”幻灯片,作为文稿的第一张幻灯片,标题键入“龟兔赛跑”,设置为:加粗、66磅;将第二张幻灯片的动画效果设置为:“进
DearMr.Smith,IsawyournameonalistofteacherofFrenchwho51.______wishtospendourholidaysin
Peoplethinkingabouttheoriginoflanguageforthefirsttimeusuallyarriveattheconclusionthatitdevelopedgraduallyas
最新回复
(
0
)