首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[-a,a]上的连续的偶函数且f(x)>0.令F(x)=∫-aa|x-t|f(t)dt (Ⅰ)证明:F’(x)单调增加. (Ⅱ)当x取何值时,F(x)取最小值? (Ⅲ)当F(x)的最小值为f(a)-a2一1时.求函数f(x).
设f(x)为[-a,a]上的连续的偶函数且f(x)>0.令F(x)=∫-aa|x-t|f(t)dt (Ⅰ)证明:F’(x)单调增加. (Ⅱ)当x取何值时,F(x)取最小值? (Ⅲ)当F(x)的最小值为f(a)-a2一1时.求函数f(x).
admin
2020-08-04
120
问题
设f(x)为[-a,a]上的连续的偶函数且f(x)>0.令F(x)=∫
-a
a
|x-t|f(t)dt
(Ⅰ)证明:F’(x)单调增加.
(Ⅱ)当x取何值时,F(x)取最小值?
(Ⅲ)当F(x)的最小值为f(a)-a
2
一1时.求函数f(x).
选项
答案
(Ⅰ)F(x)=∫
-a
a
|x-t|f(t)dt=∫
-a
x
(x一t)f(t)dt+∫
x
a
(t一x)f(t)dt=x∫
-a
x
f(t)dt—∫
-a
x
tf(t)dt+∫
-a
-a
tf(t)dt—x∫
x
a
f(t)dt=x∫
-a
x
f(t)dt—∫
-a
x
tf(t)dt—∫
a
x
tf(t)dt+x∫
a
x
f(t)dt,F’(x)=∫
-a
x
f(t)dt+xf(x)一xf(x)一xf(x)+∫
-a
a
f(t)dt+xf(x) =∫
-a
a
f(t)dt—∫
x
a
f(t)dt,因为F"(x)=2f(x)>0,所以F’(x)为单调增加的函数. (Ⅱ)因为F’(0)=∫
-a
0
f(x)dx—∫
0
a
f(x)dx且f(x)为偶函数,所以F,(0)=0,又因为F"(0)>0,所以x=0为F(x)的唯一极小点,也为最小点. 故最小值为F(0)=∫
-a
a
|t|f(t)dt=2∫
0
a
f(t)dt (Ⅲ)由2∫
0
a
tf(t)dt=f(a)-a
2
一1两边求导得 2af(a)=f’(a)一2a,于是f’(x)一2xf(x)=2x解得f(x)=[∫2xe
∫-2xdx
dx+C]e
-∫-2xdx
=Ce
x
一1,在2∫
0
a
tf(t)dt=∫(a)一a
2
一1中令a=0得f(0)=1,则C=2,于是f(x)=[*].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/zHx4777K
0
考研数学三
相关试题推荐
已知f(x)=ax3+x2+2在x=0和x=一1处取得极值,求f(x)的单调区间、极值点和拐点.
[*]
设函数f(x,y)可微,=ecoty,求f(x,y).
行列式=____________.
设由来自正恣总体X~N(μ,0.92)容量为9的简单随机样本,得样本均值=5.则未知参数μ的置信度为0.95的置信区间是_______.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是________。
设总体X的概率密度为X1,X2,…,Xn是来自X的样本,则未知参数θ的最大似然估计值为_________.
微分方程y’一xe一y+=0的通解为________.
方程组有非零解,则k=________。
随机试题
给定资料1.陈阵:黄羊真是可怜,狼太可恶了。滥杀无辜,把别人的命都不当命。毕利格:不对,黄羊才是草原上的祸害。它们把草都吃没了。草原也有生命,是大命,所有其他的都是靠大命才生存的小命。陈阵:可是黄羊要那么可恶,您刚才干嘛还把那活的黄羊
税收具有强制性、固定性和无偿性三个特征。税收具有三个基本职能:________、________和________。
《本草经集注》记载药数为
再次使用青霉素需重做皮肤过敏试验的要求是
混凝土墙式护栏属于()。
征收作为政府的行政行为之一,必须体现合法行政的原则精神,而合法行政原则的一个基本要求就是()。
下列说法正确的是().
请设计一节写作课的教案,达到以下目的:(1)学生能够用英语写介绍culturalrelics的短文;(2)培养学生运用英语的能力;(3)引导学生形成正确对待文化遗产的态度。
[A]Evaluateyoursystem[B]Developasystemofyourown[C]Mixbusinesswithpleasure[D]Neverforgetyourresponsi
A、There’smuchtodobesidesworkandstudy.B、It’sconvenientforpeopletogoanywhere.C、Thenaturalenvironmentisbeneficia
最新回复
(
0
)