首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
甲、乙两人比赛射击,每个射击回合中取胜者得1分,假设每个射击回合中,甲胜的概率为α,乙胜的概率为β(α+β=1),比赛进行到一人比另一人多2分为止,多2分者最终获胜.求甲、乙最终获胜的概率.比赛是否有可能无限地一直进行下去?
甲、乙两人比赛射击,每个射击回合中取胜者得1分,假设每个射击回合中,甲胜的概率为α,乙胜的概率为β(α+β=1),比赛进行到一人比另一人多2分为止,多2分者最终获胜.求甲、乙最终获胜的概率.比赛是否有可能无限地一直进行下去?
admin
2015-07-22
63
问题
甲、乙两人比赛射击,每个射击回合中取胜者得1分,假设每个射击回合中,甲胜的概率为α,乙胜的概率为β(α+β=1),比赛进行到一人比另一人多2分为止,多2分者最终获胜.求甲、乙最终获胜的概率.比赛是否有可能无限地一直进行下去?
选项
答案
设A={甲最终获胜},B={乙最终获胜}. 在前两次比赛中,若“甲连胜两个回合”,记为C
1
,则P(A|C
1
)=1;若“乙连胜两个回合”,记为C
2
,则P(A|C
2
)=0;若“甲、乙各胜一个回合”,记为C
3
,则前两个回合打平,从第三回合起,比赛相当于从头开始一样,所以P(A|C
3
)=P(A).显然 P(C
1
)=α
2
,P(C
2
)=β
2
,P(C
3
)=2αβ,由全概率公式 P(A)=P(A|C
1
)P(C
1
)+P(A|C
2
)P(C
2
)+P(A|C
3
)P(C
3
) =α
2
+0+2αβP(A)得P(A)=[*] 同理有PB=P(B|C
1
)P(C
1
)+P(B|C
2
)P(C
2
)+P(B|C
3
)P(C
3
) =0+β
2
+2αβPB, [*] 所以以概率为1地相信:比赛不会无限地一直进行下去,或甲最终获胜,或乙最终获胜.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/z5U4777K
0
考研数学三
相关试题推荐
据新华社2022年4月7日报道,截至2022年3月底,全国机动车保有量突破()亿辆。
2022年2月27日,我国在文昌航天发射场使用长征八号运载火箭成功将()颗卫星发射升空,创造我国一箭多星新纪录。
据新华社2022年4月7日报道,近日,中共中央、国务院印发了《信访工作条例》,并发出通知,要求各地区各部门认真遵照执行。通知指出,信访工作是党的()的重要组成部分,是了解社情民意的重要窗口。
2022年国务院政府工作报告指出,对小规模纳税人阶段性免征增值税。对小微企业年应纳税所得额()部分,再减半征收企业所得税。
风景秀丽的黄山以奇松、怪石、云海、温泉“四绝”著称,明代旅行家徐霞客两游黄山,留下了“五岳归来不看山,黄山归来不看岳”的感叹。运用矛盾的普遍性与特殊性的辩证关系原理判断,下列说法正确的是()
这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快.感染范围最广、防控难度最大的一次重大突发公共卫生事件。对我们来说,这是一次危机,也是一次大考。实践证明,党中央对疫情形势的判断是准确的,各项工作部署是及时的,采取的举措是有力有效的。防控工作取得的
求下列均匀薄片或均匀物体对指定直线的转动惯量:(1)边长为a与b的矩形薄片对两条边的转动惯量;(2)轴长为2a与2b的椭圆形薄片对两条轴的转动惯量;(3)半径为a的球体对过球心的直线及对与球体相切的直线的转动惯量;(4)半径为a,高为h的圆柱体对过
将函数f(x)=x-1,(0≤x≤2)展开成周期为4的余弦级数
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设函数f(x)在[0,+∞)上连续、单调不减且f(0)≥0,试证函数在[0,+∞)上连续且单调不减(其中n>0).
随机试题
通过棘孔的是
患者,男性,50岁。口腔腭部破溃疼痛1个月余。有反复发作史。口腔检查:软腭部一个大而深的溃疡,直径1.5cm,似弹坑状,周边红肿隆起但整齐,底部微凹,表面有假膜,可见腭垂有缺损。初步诊断为
()是预估的最终目的。
下列说法错误的是()。
上个世纪80年代到90年代初,______和______的独立标志着帝国主义在非洲的殖民体系最终崩溃。90年代初,______成为南非历史上第一位黑人总统。
社会主义初级阶段是指()
下列描述中正确的是
要将电话号码的输入格式固定为:×××-××××××××,应定义字段的属性是()。
EuropeancountrieshavebeencarefullywatchingmeviolencethatexplodedacrossFrance,worriedthattheirvehiclesandbuildin
AClassroomWhereNoOneCheatsA)WhenIcatalogmypersonaltoptenlistofteachingfailures,thefirstspotalwaysgoe
最新回复
(
0
)