首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η1,…,ηk是向量子空间V的一个规范正交基,α1,α2∈V,它们在此基下的坐标分别为k维实向量γ1,γ2.证明: (1)内积(α1,α2)=(γ1,γ2). (2)||αi|| =||γi||,i=1,2.
设η1,η1,…,ηk是向量子空间V的一个规范正交基,α1,α2∈V,它们在此基下的坐标分别为k维实向量γ1,γ2.证明: (1)内积(α1,α2)=(γ1,γ2). (2)||αi|| =||γi||,i=1,2.
admin
2017-08-07
55
问题
设η
1
,η
1
,…,η
k
是向量子空间V的一个规范正交基,α
1
,α
2
∈V,它们在此基下的坐标分别为k维实向量γ
1
,γ
2
.证明:
(1)内积(α
1
,α
2
)=(γ
1
,γ
2
).
(2)||α
i
|| =||γ
i
||,i=1,2.
选项
答案
(1)设γ
i
=(c
i1
,c
i2
…,c
ik
)
T
,则α
i
=c
i1
η
1
+c
i2
η
2
+…+c
ik
η
k
,i=1,2.于是 (α
1
,α
2
) =(c
11
η
1
+c
12
η
2
+…+c
1k
η
k
,c
21
η
1
+c
22
η
2
+…+c
2k
η
k
) =c
11
c
21
+c
12
c
22
+…+c
1k
c
2k
=(γ
1
,γ
2
). (2)当α
1
=α
2
时,用(1)得||α
i
||
2
=||γ
i
||
2
,从而||α
i
||=||γ
i
||,i=1,2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/yzr4777K
0
考研数学一
相关试题推荐
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3经正交变换x=Py化成.f=y22+2y32,P是三阶正交矩阵,试求常数a、β.
设A,B为同阶方阵,(Ⅰ)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(Ⅰ)的逆命题成立.
设A=,A*是A的伴随矩阵,则(A*)-1=_________.
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=E+(1/a)aaT,其中A的逆矩阵为B,则a=________.
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
设n阶矩阵A与B等价,则必有().
设A=,a=(a,1,1)T,已知Aa与a线性相关,则a=_________.
(2011年试题,三)设随机变量X与y的概率分布本别为且P(X2=Y2)=1求X与y的相关系数ρxy
(2008年试题,二)设A为2阶矩阵,α,α为线性无关的2维列向量Aα1=0,Aα2=2α1+α2,则A的非零特征值为___________.
(1998年试题,十一)设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
随机试题
关于头痛伴随症状与疾病的关系A、头痛伴剧烈呕吐B、头痛伴癫痫C、头痛伴视力障碍D、头痛伴眩晕E、头痛伴意识障碍椎一基底动脉供血不足
我国的政体是()。
患儿,5岁,体重25kg,在家玩耍时不慎打翻开水瓶,双下肢被开水烫伤后皮肤出现大水疱,皮薄,疼痛明显,水疱破裂后创面为红色。对于该患儿不正确的急救措施是
进度计划收尾阶段设备监理工程师的具体工作内容包括()。
企业支付现金,只能从开户银行提取。
会计人员如果泄露本单位的商业秘密,可能导致的后果将会有()。
在个人商用房贷款的贷后管理和检查环节,要检查的内容包括()。
绿豆:豌豆
在窗体上绘制一个文本框(名称为Text1)和一个命令按钮(名称为Cmd1,标题为Display)。请编写Cmdl的Click事件过程,使得在程序运行后,按Esc键就调用这个事件过程且在文本框中显示VisualBasic,程序运行结果如下图所示。
A、youagreetodosomethingelseinstead.B、youtryyourbesttoignoreitseffects.C、youareawarethatpeopleareusedtooth
最新回复
(
0
)