首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量α1,α2,…,αm(m<n)线性无关,证明:n维向量β1,β2,…,βm线性无关的 充分条件是α1,α2,…,αm与β1,β2,…,βm等价.
设n维向量α1,α2,…,αm(m<n)线性无关,证明:n维向量β1,β2,…,βm线性无关的 充分条件是α1,α2,…,αm与β1,β2,…,βm等价.
admin
2017-06-14
38
问题
设n维向量α
1
,α
2
,…,α
m
(m<n)线性无关,证明:n维向量β
1
,β
2
,…,β
m
线性无关的
充分条件是α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
m
等价.
选项
答案
如果α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
m
等价,则r(α
1
,α
2
,…,α
m
)=r(β
1
,β
2
,…,β
m
). 由于α
1
,α
2
,…,α
m
线性无关,r(α
1
,α
2
,…,α
m
)=m,所以β
1
,β
2
,…,β
m
线性无关,故充分性成立.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ypu4777K
0
考研数学一
相关试题推荐
用欧拉方程x2(d2y/dx2)+4x(dy/dx)+2y=0(x>0)的通解为_______.
设已知线性方程组Ax=b存在2个小吲的解.求λ,a;
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
如果0<β<α<π/2,证明
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵.求矩阵B.
(1998年试题,十二)已知线性方程组(I)的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22.…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组(Ⅱ)的通解,并说明理由.
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3ξ2+ξ3是否是A的特征向量?说明理由;
随机试题
通常将_______、________、________和称为慢性胰腺炎的四联症。
等渗性脱水的基本特征是什么?
生长素的作用不包括
前锯肌由___________神经支配;肩胛提肌由___________神经支配;二腹肌前腹由___________神经支配。
某新食物资源样品,需进行蛋白质营养价值评定。需计算消化率,则不需测定
it电质灾害危险性评估工作结束后()年,工程建设仍未进行,应重新进行地质灾害危险性评估工作。
建筑工程一切险的被保险人不包括( )。
在这种恶劣的条件下,人类是无法生存的。
Theprotection(of)ourenvironment(is)not(nothing)tobelefttothegovernment.Everyoneshould(beconcerned).
Cellscannotremainaliveoutsidecertainlimitsoftemperatureandmuchnarrowerlimitsmarktheboundariesofeffectivefunc
最新回复
(
0
)