首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)内连续,且F(x)=r(2t一x)f(t)dt,证明: (Ⅰ)若f(x)是偶函数,则F(x)也是偶函数。 (Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
设函数f(x)在(一∞,+∞)内连续,且F(x)=r(2t一x)f(t)dt,证明: (Ⅰ)若f(x)是偶函数,则F(x)也是偶函数。 (Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
admin
2018-05-25
82
问题
设函数f(x)在(一∞,+∞)内连续,且F(x)=r(2t一x)f(t)dt,证明:
(Ⅰ)若f(x)是偶函数,则F(x)也是偶函数。
(Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
选项
答案
(Ⅰ)F(一x)=∫
0
-x
(2t+x)f(t)dt[*]一∫
0
x
(一2u+x)f(一u)du, 若f(x)是偶函数,则有f(一x)=f(x)。故 上式=∫
0
x
(2u一x)f(u)du=F(x), 即F(x)也是偶函数。 (Ⅱ)欲证F(x)是单调减函数,则需证F’(x)<0或F’(x)≤0且等号仅在某些点成立。 由已知 F(x)=2∫
0
x
tf(t)dt一x∫
0
x
f(t)dt, 则 F’(x)=2xf(x)一∫
0
x
f(t)dt—xf(x)=xf(x)一∫
0
x
f(t)dt =∫
0
x
f(x)dt—∫
0
x
f(t)dt=∫
0
x
[f(x)一f(t)]dx。 因f(x)是单调减函数,t介于0与x之间,所以当x>0时,f(x)一f(t)<0,故F’(x)<0;当 x<0时,f(x)一f(t)>0,故F’(x)<0;当x=0时,F’(0)=0。 即x∈(一∞,+∞)时,F’(x)≤0且符号仅在x=0时成立,因此F(x)也是单调减函数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ymg4777K
0
考研数学一
相关试题推荐
设实方阵A=(aij)4×4满足:(1)aij=Aij(i,j=1,2,3,4,其中Aij为aij的代数余子式);(2)a11≠0.求|A|.
设有矩阵Am×n,Bn×m,已知Em一AB可逆,证明:En一BA可逆,且(En一BA)—1=Em×n+B(Em一AB)—1A.
已知非齐次线性方程组有3个线性无关的解.(I)证明方程组系数矩阵A的秩r(A)=2;(Ⅱ)求a,b的值及方程组的通解.
已知α1=(1,0,2,3),α2=(1,1,3,5),α3=(1,一1,a+2,1),α4=(1,2,4,a+8)及β=(1,1,6+3,5).(1)a、b为何值时,β不能表示成α1,α2,α3,α4的线性组合?(2)a、b为何值时,
设总体X的概率密度为其中θ为未知参数且大于零,X1,X2,…,Xn为来自总体X的简单随机样本.求θ的最大似然估计量.
曲线的渐近线有
求极限.记此极限函数为f(x),求函数f(x)的间断点并指出其类型.
计算其中∑为区域Ω的外侧,Ω由不等式z≥,x2+y2+z2≥1和x2+y2+z2≤4所确定,f(u)有连续一阶导数.
求平面P的方程,已知P与曲面z=x2+y2相切,并且经过直线L:
设l为圆周(a>0)一周,则空间第一型曲线积分∮x2ds=________.
随机试题
活塞式压缩机的型号中的前面第二位表示特点代号。
下列哪一项是阿司匹林对冠心病心绞痛的治疗作用
某修造船厂发生一起火灾事故。该厂修船船坞几天前有一艘外国船籍的油船(约9万t)入坞,更换侧罐的外板和中央罐的船底外板。事故发生当天,准备更换其中的左弦3号侧罐(长约40m、宽约10m、高约20m)的外板。上午在罐内装配脚手架,然后由10个人开始对罐内施工
下列各项中,按照“生活服务”征收增值税的是()。
周长相等的正方形和圆,______的面积较大.
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
SpacinginAnimals1.Anyobservantpersonhasnoticedthatawildanimalwillallowamanorotherpotentialenemytoapproa
Lookatthestatementsbelowandtheinformationaboutmandoingwomen’swork.Whichpieceofinformationdoeseachstatement1
A、Damswillprotectthecityfrommoderatelyintensehurricanesthistime.B、ThereisanewlakecalledLakeNewOrleansemergin
Asfoodistothebody,soislearningtothemind.Ourbodiesgrowandmusclesdevelopwiththeinputofadequatenutritious【M1
最新回复
(
0
)