首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点。
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点。
admin
2017-12-31
88
问题
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点。
选项
答案
f(x)的定义域为(0,+∞),[*]. 由f’(x)=lnx+1=0,得驻点为x=[*]为f(x)的极小值点,也为最小值点,最小值为[*]. (1)当k>[*]时,函数f(x)在(0,+∞)内没有零点; (2)当k=[*]时,函数f(x)在(0,+∞)内有唯一零点x=[*]; (3)当0<k<[*]时,函数f(x)在(0,+∞)内有两个零点,分别位于(0,[*]+∞)内.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/yXX4777K
0
考研数学三
相关试题推荐
设f(x)=
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(A)=f(b)=0.求证:存在η∈(a,b),使ηf(η)+f’(η)=0.
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量,如果生产函数为Q=2x1αx1β,其中α,β为正常数,且α+β=1.假设两种要素价格分别为p1,p2,试问产出量为12时,两要素各投入多少,可以使得投入总费用最小?
设方阵A1与B1合同,A2与B2合同,证明:合同.
已知非齐次线性方程组A3×4X=b①有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是________.
设矩阵,则A3的秩为_______.
设n阶矩阵A非奇异(行≥2),A*是矩阵A的伴随矩阵,则【】
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求正交变换x=Qy将f化为标准形。
随机试题
肺结核的基本影像表现包括
医院的任务不包括
结构中含有二硫键的降血糖药是
疳证病机源于
这种情况发生的最可能原因是最有效的防治措施是
刷涂的顺序是正确的是()
()是判定是否构成操纵市场的关键因素。
客户维持担保比例不得低于150%。()
我国现存最早的《道藏》分别出现在()。
张立是一位单身白领,工作5年积累了一笔存款,由于该笔存款金额尚不足以购房,考虑将其暂时分散投资到股票、黄金、基金、国债和外汇等5个方面。该笔存款的投资需要满足如下条件:(1)如果黄金投资比例高于1/2,则剩余部分投入国债和股票;(2)如
最新回复
(
0
)