首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数u=x3+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值。
求函数u=x3+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值。
admin
2019-01-19
91
问题
求函数u=x
3
+y
2
+z
2
在约束条件z=x
2
+y
2
和x+y+z=4下的最大值与最小值。
选项
答案
方法一:可以利用拉格朗日乘数法求极值,两个约束条件的情况下,作拉格朗日函数 F(x,y,z,λ,μ) =x
2
+y
2
+z
2
+λ(x
2
+y
2
一z)+μ(z+y+z一4), 令 [*] 解方程组得 (x
1
,y
1
,z
1
)=(1,1,2),(x
2
,y
2
,z
2
)=(一2,一2,8)。 代入原函数,求得最大值为72,最小值为6。 方法二:问题可转化为一个约束函数的情况,求u=x
2
+y
2
+x
4
+2x
2
y
2
+y
4
在条件x+y+x
2
+y
2
=4下的最值,设 F(x,y,λ)=u=x
4
+y
4
+2x
2
y
2
+x
2
+y
2
+λ(x+y+x
2
+y
2
一4), 令 [*] 解得(x
1
,y
1
)=(1,1),(x
2
,y
2
)=(一2,一2),代入z=x
2
+y
2
,得z
1
=2,z
1
=8。 同理可得原函数最大值为72,最小值为6。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/y6P4777K
0
考研数学三
相关试题推荐
已知线性方程组的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的通解,并说明理由.
设曲线L位于χoy平面的第一象限内,L上任一点M处的切线与y轴总相交,交点记为A,已知,且L过点(),求L的方程为_______.
微分方程y〞+2y′+5y=0的通解为_______.
设向量β可由向量组α1,α2,…,αn线性表示,证明:表示唯一的充分必要条件是向量组α1,α2,…,αn线性无关.
设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm线性无关的充分必要条件为【】
微分方程xlnxdy+(y—lnx)dx=0满足条件y(e)=1的解为_________.
以y=C1cosx+C2sinx+e2x(其中C1,C2为任意常数)为通解的二阶线性常系数非齐次微分方程是_________.
已α1=(1,一2,1,0,0),α2=(1,一2,0,1,0),α3=(0,0,1,一1,0),α4=(1,一2,3,一2,0)是线性方程组的解向量,问α1,α2,α3,α4是否构成此方程组的基础解系,假如不能,是多了还是少了?若多了,如何去除?若少
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是()
(Ⅰ)求y"一7y’+12y=x满足初始条件y(0)=的特解;(Ⅱ)求y"+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)求y"+4y’+4y=ex的通解,其中a为常数;(Ⅳ)求y"+y=x3一x+2的通解.
随机试题
行政执法人员送达有关法律文书方式包括:()
小叶性肺炎属于
首先考虑何病其辨为何证
在系统、设备、设施的一部分发生故障或破坏的情况下,在一定时间内也能保证安全的技术措施称为()。
箱涵顶进在穿越铁路路基时,必须对铁道线路进行适当加固并()。
丰华公司于2014年1月1日动工兴建一幢办公楼,工期为1年,公司为建造办公楼发生有关借款业务如下。(1)专门借款有两笔,分别为:①2014年1月1日专门借款3000万元,借款期限为3年,年利率为8%,利息按年支付;②2014年7月1日专门借款3000
武术的本质特征是()。
箱子里有大小相同的3种颜色玻璃珠各若干颗,每次从中摸出3颗为一组,问至少要摸出多少组,才能保证至少有2组玻璃珠的颜色组合是一样的?()
AnumberofyearsagoIsatdownonastonebenchoutsidetheTeatroAvenidainMaputo,Mozambique,whenIworkedasan【M1】_____
Finallythewomanfoundher(lose)______childwiththehelpofthepolice.
最新回复
(
0
)