首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是: f(a,b)=0,f’x(a,b)=0,
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是: f(a,b)=0,f’x(a,b)=0,
admin
2016-10-20
69
问题
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’
y
(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:
f(a,b)=0,f’
x
(a,b)=0,
且当r(a,b)>0时,b=φ(a)是极大值;当r(a,b)<0时,b=φ(a)是极小值,其中
选项
答案
y=φ(x)在x=a处取得极值的必要条件是φ’(a)=0.按隐函数求导法,φ’(x)满足 f’
x
(x,φ(x))+f’
y
(x,φ(x))φx(x)=0. (*) 因b=φ(a),则有 f(a,b)=0, φ’(a)=[*] 于是f’
x
(a,b)=0. 将(*)式两边对x求导得 f’’
xx
(x,φ(x))+f’’
xy
(x,φ(x))φ’(x)+[*][f’
y
(x,φ(x))]φ’(x)+f’
y
(x,φ(x))φ’’(x)=0, 上式中令x=a,φ(a)=b,φ’(a)=0,得 [*] 因此当[*]时,φ’’(a)<0,故b=φ(a)是极大值; 当[*]时,φ’’(a)>0,故b=φ(a)是极小值.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/y0T4777K
0
考研数学三
相关试题推荐
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
某公共汽车站每隔10min有一辆汽车到达,一位乘客到达汽车站的时间是任意的,求他等候时间不超过3min的概率.
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
试求下列微分方程在指定形式下的解:(1)y〞+3yˊ+2y=0,形如y=erx的解;(2)x2y〞+6xyˊ+4y=0,形如y=xλ的解.
设随机变量X和Y,相互独立,且均服从参数为1的指数分布,V=min(X,Y),U=max(X,Y)求(1)随机变量V的概率密度fv(v);(2)E(U+V).
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=min(X,Y)的分布函数为().
随机试题
阿司匹林易发生水解的化学结构原因是
计算机网络是现代计算机技术与()相结合的产物。
下列基金费用由基金资产承担的是()。I.基金托管人的托管费Ⅱ.基金合同终止时的清算费用Ⅲ.基金管理人的管理费Ⅳ.基金合同生效后的信息披露费用Ⅴ.基金相关账户开立费用及账户维护费用
国际技术贸易中的合作生产的目的是()。
财产清查按清查的时间分类可以分为()。
中国进口的某类化工产品2017年占中国的市场份额比2016年有较大增加。经查,两年进口总量虽持平,但仍给生产同类产品的中国产业造成了严重损害。根据对外贸易法律制度的规定,下列表述中,正确的是()。
咨询方案中需要明确的咨询师的权利是()。
考古:文物:博物馆
选出有语病的一句( )。
给定资料1.2015年6月下旬,5月份启动的湖北党风廉政宣教月活动仍在持续。两个月来,各地各单位围绕“守纪律、讲规矩、作表率”主题,精心组织,周密部署,开展了丰富多彩的党风廉政宣教活动,全省389.9万党员和各级非党员干部受教育做到了“全覆盖”。
最新回复
(
0
)