首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:如果n阶矩阵满足(A—aE)(A一bE)=O(其中a≠b),那么A可对角化.
证明:如果n阶矩阵满足(A—aE)(A一bE)=O(其中a≠b),那么A可对角化.
admin
2020-09-25
96
问题
证明:如果n阶矩阵满足(A—aE)(A一bE)=O(其中a≠b),那么A可对角化.
选项
答案
由(A—aE)(A一bE)=O,有|A—aE|=0或|A一bE|=0,故A的特征值为a或b. ①若a是A的特征值,b不是A的特征值,则|A一bE|≠0,即A一bE是可逆阵,于是A—aE=O,即A=aE,,所以A可对角化. ②若b是A的特征值,a不是A的特征值,同理知A可对角化. ③若a,b都是A的特征值,则由矩阵秩的不等式有:R(A—aE)+R(A一bE)≤n, R(A—aE)+R(A一bE)=R(A—aE)+R(bE一A) ≥R(A—aE+bE一A)=R[(b一a)E]=n(a≠b), 所以R(A—aE)+R(A一bE)=n,即[n一R(A—aE)]+[n一R(A一bE)]=n, 所以方程(A—aE)x=0与(A一bE)x=0的基础解系中向量个数之和为n,则A有n个线性无关的特征向量,故A可对角化. 综上可知A总可对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/xPx4777K
0
考研数学三
相关试题推荐
设A=,B是3阶非零矩阵,且AB=O,则Ax=0的通解是__________.
设三阶行列式D3的第二行元素分别为1、一2、3,对应的代数余子式分别为一3、2、1,则D3=________。
曲线y=x2与直线y=x+2所围成的平面图形面积为________.
(14年)设随机变量X,Y的概率分布相同,X的概率分布为P{X=0}=,P{X=1}=,且X与Y的相关系数ρXY=.(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使f’(ξ)-λ[f(ξ)-ξ]=1.
设则必有()
设随机变量X服从指数分布,则随机变量Y=min{X,2}的分布函数()
[2015年]设二次型f(x1,x2,x3)在正交变换X=PY下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换X=QY下的标准形为().
二次型f(x1,x2,x3)=(x1+2x2+a3x3)(x1+5x2+b3x3)的合同规范形为__________。
随机试题
()是因人的认识需要是否得到满足而产生的体验。
已知X1,X2,…,X100的平均值为7,标准差为1,则4X1,4X2,…,4X100的平均值、标准差分别为()和()。
库存管理者责任中,测量和跟踪过程主要包括()、补充订购、入库和出库管理等方面。
有人说要做正确的事,有人说要正确地做事,你怎么看?
对于8259A的中断请求寄存器IRR,当某一个IRi端呈现______时,则表示该端有中断请求。
【S1】【S4】
Mostofyouwouldprobablysaythatwhatmakesyoutrulyhappyisyourfamilyandtheloveyoushareinyourrelationships,an
Duringrecentyearswehaveheardmuchabout"race":howthisracedoescertainthingsandthatracebelievescertainthingsand
Therearealargenumberofreferencebooks______toyou;youcanmakeuseofthematanytimeyoulike.
W:Ray,aren’tyougoingstraighthomeafterschooltoday?M:________
最新回复
(
0
)