首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在0<x≤1时f(x)=xsinx,其他的x满足关系式 f(x)+k=2f(x+1), 试求常数k使极限存在.
设函数f(x)在0<x≤1时f(x)=xsinx,其他的x满足关系式 f(x)+k=2f(x+1), 试求常数k使极限存在.
admin
2016-09-13
102
问题
设函数f(x)在0<x≤1时f(x)=x
sinx
,其他的x满足关系式
f(x)+k=2f(x+1),
试求常数k使极限
存在.
选项
答案
因求“0
0
”型未定式极限的常用方法是将该类幂指函数u(x)
v(x)
化为复合函数e
v(x)lnu(x)
,故 [*] 其中,通过等价无穷小替换与洛必达法则求得: [*] 根据题设的关系式f(x)=2f(x+1)-k,得 [*] 由上述结果.f(x)在x=0处右极限f(0
+
)=1;而其左极限 f(0
-
)=[*][2(x+1)
sin(x+1)
-k]=2-k, 由于极限[*]是存在的,故2-k=f(0
-
)=f(0
+
)=1,则常数k=1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/xPT4777K
0
考研数学三
相关试题推荐
毛泽东同志说:“‘实事’就是客观存在着的一切事物,‘是’就是客观事物的内部联系,即规律性,‘求’就是我们去研究。”毛泽东同志还把实事求是形象地比喻为“有的放矢”。毛泽东同志所说的“矢”是()。
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
由概率的公理化定义证明:(1)P()=1-P(A);(2)P(A-B)=P(A)-P(AB).特别地,若A⊃B,则P(A-B)=P(A)-P(B).且P(A)≥P(B);(3)0≤P(A)≤1;(4)P(A∪B)
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
根据定义证明:
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).证明;
函数f(x)=的无穷间断点的个数为
随机试题
设A,B都为n阶对称矩阵,则AB也为对称矩阵的充要条件为________.
关于代谢性酸中毒主要病因的描述,正确的是()
脱氧核糖核苷酸的生成方式主要是
某家庭预计今后20年内的每月月末收入为6800元,如月收入的40%可以用于支付住房抵押贷款的月还款额,在年贷款利率为6%的情况下,该家庭有偿还能力的最大抵押贷款额为()万元。
VCR法是()崩矿方法的简称。
根据《会计从业资格管理办法》的规定,申请取得会计从业资格的人员。基本条件有()。
请根据下图所示网络结构回答下列问题。若对整个网络实施保护,防火墙应加在下图中位置1~3的____位置上。
Howmuchpercentoftheearthdoestheseacover?
我们认识到,改革是一场深刻的革命,涉及重大利益关系调整,涉及各方面体制机制完善。中国改革已进入攻坚期和深水区。这是因为,当前改革需要解决的问题格外艰巨,都是难啃的硬骨头,这个时候就要一鼓作气,瞻前顾后、优柔寡断不仅不能前进,而且可能前功尽弃。中国
A、Theman’sprofessionalbackground.B、Theman’smajorsuccessestillnow.C、Theman’sviewonthecompany.D、Theman’squestion
最新回复
(
0
)