首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ),g(χ)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(χ)=∫0χf(t)g(t)dt,则
设f(χ),g(χ)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(χ)=∫0χf(t)g(t)dt,则
admin
2020-06-11
82
问题
设f(χ),g(χ)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(χ)=∫
0
χ
f(t)g(t)dt,则
选项
A、χ=0是函数F(χ)的极小值点.
B、χ=0是函数F(χ)的极大值点.
C、(0,F(0))是曲线y=F(χ)的拐点但χ=0不是F(χ)的极值点.
D、χ=0不是函数F(χ)的极值点,(0,F(0))也不是曲线y=F(χ)的拐点.
答案
C
解析
先求导数F′(χ)=f(χ)g(χ)
F′(0)=0.
再求二阶导数F〞(χ)=f′(χ)g(χ)+f(χ)g′(χ)
F〞(0)=0.
于是还要考察F(χ)在χ=0处的三阶导数:
F″′(χ)=f〞(χ)g(χ)+2f′(χ)g′(χ)+f(χ)g〞(χ)
F″′(0)=2f′(0)g′(0)≠0.
因此(0,F(0))是曲线y=F(χ)的拐点且χ=0不是F(χ)的极值点.故应选C.
转载请注明原文地址:https://www.kaotiyun.com/show/wm84777K
0
考研数学二
相关试题推荐
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。当
计算.其中a,b>0.
设f(x)在区间[a,b]上可导,且满足证明至少存在一点ξ∈(a,b),使得f’(ξ)=f(ξ).tanξ.
设两y=a(a>0)与y=ln在(χ0,y0)处有公切线(如图3.13),求这两曲线与χ轴围成的平面图形绕χ轴旋转而成的旋转体的体积V.
由当χ→0时,1-cosaχ~[*]χ2得[*]因为sinaχ=aχ-[*]χ3+o(χ3),asinχ=a[χ-[*]+o(χ3)]=aχ-[*]χ3+o(χ3)[*]
已知函数f(μ,ν)具有连续的二阶偏导数,f(1,1)=2是f(μ,ν)的极值,已知z=f[(x+y),f(x,y)]。求。
设A是三阶方阵,α1,α2,α3是三维线性无关的列向量组,且Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2。A是否可对角化?
设A是三阶方阵,α1,α2,α3是三维线性无关的列向量组,且Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2。求A的全部特征值;
求极限。
求积分
随机试题
诊断子宫腺肌症时肌层内出现子宫内膜腺体及间质要超出基底层下至少
下列哪一项不符合缺铁性贫血()
工程项目单代号网络计划如图所示,该计划的关键路线有()条。
后张法预应力预留孔道应保证()。
小学生爱亲近老师,模仿老师的言谈举止,这体现了其()的特点。
假如你在外地出差。单位领导急需一份重要材料去参加会议,而你将此材料与别的重要绝密文件一起放在单位的保险箱里了,钥匙在你身上,你该怎么办?
近年来,S品牌的增高运动鞋销量有了明显增长,与此同时,该运动鞋的生产厂家用于研究该运动鞋的增高作用的经费也有了明显增长。因此,有业内人士分析,该品牌的增高运动鞋销量的增长,是由于其增高作用的提升。以下哪项如果为真,最能削弱上述结论?()
Ontheall-importantquestionofpower—theefficacyofpower,themoralityofpower,thedesirabilityofpower—AmericanandEuro
Writeashortcompositionofabout250to300wordsonthetopicgivenbelow.Topics:IsEnglishLanguageTeachingOverempha
Ofthethousandsofdifferentkindsofanimalsthatexistintheworld,manhaslearnedtomakefriendswithanenormousnumber.
最新回复
(
0
)