首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
选择常数λ取的值,使得向量A(x,y)=2xy(x4+y2)λi—x2(x4+y2)λj在如下区域D为某二元函数u(x,y)的梯度:(Ⅰ)D={x,y)|y>0},并确定函数u(x,y)的表达式;(Ⅱ)D={(x,y)|x2+y2>0}.
选择常数λ取的值,使得向量A(x,y)=2xy(x4+y2)λi—x2(x4+y2)λj在如下区域D为某二元函数u(x,y)的梯度:(Ⅰ)D={x,y)|y>0},并确定函数u(x,y)的表达式;(Ⅱ)D={(x,y)|x2+y2>0}.
admin
2020-03-05
50
问题
选择常数λ取的值,使得向量A(x,y)=2xy(x
4
+y
2
)
λ
i—x
2
(x
4
+y
2
)
λ
j在如下区域D为某二元函数u(x,y)的梯度:(Ⅰ)D={x,y)|y>0},并确定函数u(x,y)的表达式;(Ⅱ)D={(x,y)|x
2
+y
2
>0}.
选项
答案
记A=P(x,y)i+Q(x,y)j,先由(P,Q)为某二元函数u的梯度(即du=Pdx+Qdy)的必要条件[*]定出参数λ. [*]=2x(x
4
+y
2
)
λ
+λ4xy
2
(x
4
+y
2
)
λ—1
,[*]=—2x(x
4
+y
2
)
λ
一λ4x
5
(x
2
+y
2
)
λ—1
[*]4x(x
4
+y
2
)
λ
+4λx(x
4
+y
2
)
λ
=0([*]x>0)→λ=一1. (Ⅰ)由于D={(x,y)|y>0}是单连通,λ=一1是存在u(x,y)使du=Pdx+Qdy的充要条件,因此仅当λ=一1时存在u(x,y)使(P,Q)为u的梯度. 现求u(x,y),使得du(x,y)=[*]. 凑微分法. [*] (Ⅱ)D={(x,y)|x
2
+y
2
>0|是非单连通区域,[*]((x,y)∈D)不足以保证Pdx+Qdy存在原函数.我们再取环绕(0,0)的闭曲线C:x
4
+y
2
=1,逆时针方向,求出 ∫
C
Pdx+Qdy=∫
C
[*](一2x一2x)dxdy=0, 其中D
0
是C围成的区域,它关于y轴对称.于是∫
L
Pdx+Qdy在D与路径无关,即Pdx+Qdy在D存在原函数.因此,仅当λ=一1时A(x,y)=(P,Q)在D为某二元函数u(x,y)的梯度.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/vuS4777K
0
考研数学一
相关试题推荐
=_______.
若E(XY)=E(X)E(Y),则().
计算曲线积分+2(x2-1)ydy,L是曲线y=sinx上从点(0,0)到点(π,0)的一段I=___________..
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则等于().
设f(x)连续,且f(x)=1,a为常数,则∫xx+af(t)dt=______.
设f(x)为连续函数,I=f(tx)dx,其中t>0,s>0,则I的值
设X1,X2,X3是来自总体N(0,σ2)的简单随机样本,记U=X1+X2与V=X2+X3,则(U,V)的概率密度为_______.
设f(x)在x=0的某邻域内二阶连续可导,且f(x)/x=0.证明:级数f(1/n)绝对收敛.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
设u(χ,y)在区域D={(χ,y)|χ>0.-∞<y<+∞}有连续偏导数,试证在区域D,u(χ,y)=φ()的充要条件是:=0((χ,y)∈D).
随机试题
关于胆固醇合成的调节的叙述中,错误的是
A.高嵌体B.单面嵌体C.双面嵌体D.钉嵌体E.嵌体冠
以上属于白庀的分型是以上属于麻风的分型是
钙拮抗药的临床应用包括()
处方的含义是
某日,一大型商业文化城发生一起接线盒电气阴燃事故,过火面积0.5m2,商场值班人员由于应急处理得当,未造成大的经济损失。事后,公司领导根据这起事故,发动公司全员开展了全方位、全过程和全天候,为期3个月的火灾隐患排查及整改工作。这种安全管理做法符合(
根据《机关、团体、企业、事业单位消防安全管理规定》(公安部令第61号),机关、团体、企业、事业单位应当至少每()进行一次防火检查。
企业在对会计要素进行计量时一般应当采用()。
根据耶克斯一多德森定律,学生解决困难和复杂的任务时,哪种动机水平最有利?()
Perhapsthemythoftheperfectcommunicatorcomesfrombelievingtoostronglyinnovels,television,orfilms.Intheseplaces
最新回复
(
0
)