首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(ξ)cotξ.
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(ξ)cotξ.
admin
2019-09-04
50
问题
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(ξ)cotξ.
选项
答案
令φ(x)=f(x)sinx,则φ(0)=φ(π)=0, 由罗尔定理,存在ξ∈(0,π),使得φ’(ξ)=0, 而φ’(x)=f’(x)sinx+f(x)cosx, 于是f’(ξ)sinξ+f(ξ)cosξ=0,故f’(ξ)=-f’(ξ)cotξ.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/viJ4777K
0
考研数学三
相关试题推荐
(2002年)设函数f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
(2012年)曲线渐近线的条数为()
设f(x)在(一∞,+∞)上二阶导数连续,f(0)=01)确定a使g(x)在(一∞,+∞)上连续;2)证明对以上确定的a,g(x)在(一∞,+∞)上有连续一阶导数.
设f(x)=ex2,f[φ(x)]=1一x,且φ(x)≥0,求φ(x)及其定义域.
设n元线性方程组Ax=b,其中证明行列式|A|=(n+1)an;
已知对于n阶方阵A,存在自然数k,使得Ak=O,试证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,…,β+αt线性无关.
设n阶矩阵A正定,X=(x1,x2,…,xn)T.证明:二次型f(x1,x2,…,xn)为正定二次型.
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记f(X)=XTAX/XTX,X∈Rn,X≠0证明:二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值.
如图1.3—1所示,设曲线方程为梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0.证明:
随机试题
阅读下文,回答问题。
暴发性脑膜炎的病原体是
甲状旁腺激素对骨的主要作用是
1个月小儿未接种过卡介苗,结核菌素试验呈阳性表示
下列哪项不属于良性肿瘤与恶性肿瘤的鉴别要点
属广谱抗生素,兼有抗结核和抗麻风病作用的药物是
腹外疝最易嵌顿的是
下列乙的行为中,属于代理的是哪一个?()
一般来说,海洋食品的氟含量小于陆地食品含量。()
高校订餐软件盛行。每天众多校外人员送餐给校园安全带来很多隐患,高校准备出台措施禁止外卖进入校园。但是学生知道后反映强烈。如果你是高校管理人员,领导让你处理此事,你会怎么办?
最新回复
(
0
)