首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是s×n矩阵,B是A的前m行构成的m×n矩阵,已知A的行向量组的秩为r.证明:r(B)≥r+m—s.
设A是s×n矩阵,B是A的前m行构成的m×n矩阵,已知A的行向量组的秩为r.证明:r(B)≥r+m—s.
admin
2015-08-17
84
问题
设A是s×n矩阵,B是A的前m行构成的m×n矩阵,已知A的行向量组的秩为r.证明:r(B)≥r+m—s.
选项
答案
因(A的行向量的个数s)一(A的线性无关行向量的个数r(A))≥(B的行向量个数m)一(B的线性无关的行向量的个数r(B)),即 s一r(A)≥m—r(B),得 r(B)≥r(A)+m一s=r+m一s.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/vQw4777K
0
考研数学一
相关试题推荐
f(χ)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f′(0)=0.证明:存在ξ∈(-1,1),使得f″′(ξ)=3.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3,(b>0)其中A的特征值之和为1,特征值之积为-12.(1)求a,b.(2)用正交变换化f(x1,x2,x3)为标准型.
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明x=k1η1+k2η2+…+ksηs也是它的解.
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:cov
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πcosxdx=0。证明在(0,π)内f(x)至少有两个零点。
设向量组α1=(1,3,2,0)T,α2=(7,0,14,3)T,α3=(2,一1,0,1)T,α4=(5,1,6,2)T,α5=(2,一1,4,1)T,求该向量组的秩和一个极大线性无关组,并把不是极大线性无关组的向量用此极大线性无关组线性表示.
设A为n阶矩阵,且A2-2A-8E=O.证明:r(4E-A)+r(2E+A)=n.
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
设A为n阶实对称可逆矩阵f(χ1,χ2,…,χN)=.(1)记X=(χ1,χ2,…,χn)T,把二次型f(χ1,χ2,…,χn)写成矩阵形式;(2)二次型g(X)=XTAX是否与f(χ1,χ2,…,χn)合同?
设A=有三个线性无关的特征向量,求a及An.
随机试题
1950年6月,中共七届三中全会上确定的国民经济恢复时期的中心任务是()
在人体内不产生能量的营养素有()。
痿证肺热津伤证代表方()痿证肝肾亏损证代表方()
溃疡性结肠炎最常见的临床表现为
我国古代宫殿布局“左祖右社”体现了中国礼制思想中()的思想。
一、注意事项1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力与对文字表达能力并重的考试。2.参考时限,阅读资料40分钟,作答110分钟。3.仔细阅读给定的材料,按申论要求依次作答,答案书写在指定位置。二、给定材料1.据国家
一、注意事项申论考试与传统的作文考试不同,是分析驾驭材料的能力与表达能力并重的考试。二、给定资料1.中年职工奔波在单位和家庭之间,担心抽不出时间接送孩子;青年白领穿行在拥挤的地铁里,发愁买不起房子;大学生害怕毕业后找不到满意的工作,甘
强调遗传在个体发展中的作用的心理学家是()。
现有四个向量组①(1,2,3)T,(3,一l,5)T,(0,4,一2)T,(1,3,0)T;②(a,l,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,l,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
Althoughcomputerscanenhancepeople’sabilitytocommunicate,computergamesareacauseofunderdevelopedcommunicationskill
最新回复
(
0
)