首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=f(x)满足方程y”+2y’+y=3xe—x及条件y(0)=,y’(0)=一2,求广义积分∫0+∞f(x)dx.
设函数y=f(x)满足方程y”+2y’+y=3xe—x及条件y(0)=,y’(0)=一2,求广义积分∫0+∞f(x)dx.
admin
2021-08-05
90
问题
设函数y=f(x)满足方程y”+2y’+y=3xe
—x
及条件y(0)=
,y’(0)=一2,求广义积分∫
0
+∞
f(x)dx.
选项
答案
方法一 对应齐次方程的特征方程r
2
+2r+1=0有二重特征根r=一1,则对应齐次方程的通解为 Y=(C
1
+C
2
x)e
—x
. 原方程的自由项3xe
—x
,λ=r=一1是特征方程的二重根,故应设特解为y
*
=x
2
(ax+b)e
—x
. 代入原方程,解得a=1/2,b=0,则y
*
=[*]x
3
e
—x
.因此,方程的通解为 f(x)=Y+y
*
=(C
1
+C
2
)e
—x
+[*]x
3
e
—x
. 再由y(0)=1/3,y’(0)=一2解得C
1
=1/3,C
2
=—5/3,所以f(x)=[*].最后,利用分部积分,得 [*] 方法二 本题具有特殊性.只需确定通解f(x)的一般形式,不必计算其中的各个参数即可求出广义积分∫
0
+∞
f(x)dx的值.这是因为,根据所给方程可设 f(x)=(C
1
+C
2
x)e
—x
+x
2
(ax+b)e
—x
=(C
1
+C
2
x+bx
2
+ax
3
)e
—x
, 易知[*]所以 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/vPy4777K
0
考研数学二
相关试题推荐
试用配方法化二次型f(x1,x2,x3)=2x12+3x22+x32+4x1x2—4x1x3—8x2x3为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及正、负惯性指数。
设f(χ)二阶连续可导,f′(0)=0,且=-1,则().
设f(x,y)连续,且f(x,y)=xy+f(u,v)dudv,其中D是由y=0,y=x2,x=1所围区域,则f(x,y)=()
关于函数y=f(x)在点x0的以下结论正确的是()
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。证明矩阵Q可逆的充分必要条件是αTA一1α≠b。
设f(x)=arcsinx,ξ为f(x)在闭区间[0,t]上拉格朗日中值定理的中值点,0<t<1,求极限.
极限
下列极限存在的是[].
已知,y1=x,y2=x2,y3=ex为方程y’’+p(x)y’+q(x)y=f(x)的三个特解,则该方程的通解为()
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为()
随机试题
医疗保健机构无须为产妇提供科学育儿、合理营养和母乳喂养的指导。()
发动机电控系统主要考虑的是排放问题。()
预防破伤风的疫苗麻疹疫苗
有关宪法修正案的说法,下列哪一选项是正确的?
著作权中的改编权是指()。
下列支票不得背书转让的有()。
A注册会计师是J公司2005年度会计报表审计的外勤审计负责人,在审计过程中,需对负责销售与收款循环审计的助理人员提出的相关函证问题予以解答,并对其编制的有关审计工作底稿进行复核。请代为做出正确的专业判断。
未预期到的通货膨胀会使财富()。
"That’soutrageous!"heprotested.
Youshouldspendabout20minutesonQuestions27-40,whicharebasedonReadingPassage3below.MAKINGTHEMOSTOFTRENDSExpe
最新回复
(
0
)