首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
admin
2017-12-29
86
问题
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令u
n
=f(n)(n=1,2,…),则下列结论正确的是( )
选项
A、若u
1
>u
2
,则{u
n
}必收敛
B、若u
1
>u
2
,则{u
n
}必发散
C、若u
1
<u
2
,则{u
n
}必收敛
D、若u
1
<u
2
,则{u
n
}必发散
答案
D
解析
本题依据函数f(x)的性质选取特殊的函数数列,判断数列{u
n
= f(n)}的敛散性。
取f(x)=—lnx,f"(x)=
>0,u
1
=— lnl=0>— ln2=u
2
,而f(n)=—lnn发散,则可排除A;
取f(x)=
>0,u
1
=1>
=u
2
,而f(n)=
收敛,则可排除B;
取f(x)=x
2
,f"(x)=2>0,u
1
=1<4=u
2
,而f(n)=n
2
发散,则可排除C;
故选D。
事实上,若u
1
<u
2
,则
=f’(ξ
1
)>0。而对任意x∈(ξ
1
,+∞),由f"(x)>0,所以f’(x)>f’(ξ
1
)>ξ
1
∈(1,2)>0,对任意ξ
2
∈(ξ
1
,+∞),f(x)=f(ξ
1
)+f’(ξ
2
)(x—ξ
1
)→+∞(x→+∞)。
故选D。
转载请注明原文地址:https://www.kaotiyun.com/show/vGX4777K
0
考研数学三
相关试题推荐
求下列函数的导数:设f(t)具有二阶导数,=x2,求f(f’(x)),(f(f(x)))’.
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(x)>ψ(k)(x0).试证:当x>x0时,φ(x)>ψ(x).
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f(0)+[f2(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f"(ξ)+f"(ξ)=0.
设有两条抛物线y=nx2+和y=(n+1)x2+,记它们交点的横坐标的绝对值为an,求:这两条抛物线所围成的平面图形的面积Sn;
设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为_____.
已知f(x),g(x)连续可导,且f′(x)=g(x),g′(x)=f(x)+φ(x),其中φ(x)为某已知连续函数,g(x)满足微分方程g′(x)-xg(x)=cosx+φ(x),求不定积分∫xf″(x)dx.
过点且满足关系式的曲线方程为__________。
A、 B、 C、 D、 B这是无界函数的反常积分,x=±1为瑕点,与求定积分一样,作变量替换x=sint,其中T<,故选B。
A、c2mB、mC、cmD、c3mB由=c-1.c-2.c-3=(c-1.c-2.c-3)(c.c2.c3)=m.故选(B).
随机试题
韦伯指出,世袭的统治者很大程度依赖于他的臣民的
一个住所在日本的美国人,未留遗嘱死亡,遗留有动产在纽约州。为此动产的继承,其亲属在日本国法院起诉,依日本法律规定,继承本应适用被继承人的本国法(纽约州的法律),而纽约州的冲突法规定,动产继承适用被继承人的住所地法。于是,日本法院依照日本关于动产继承的法律规
简述艺术活动的构成。
根据《建设工程项目管理规范》,项目风险管理正确的程序是()。
运营活动,是指投入一定的资源,经过一系列多种形式的变换,使其价值增值,最后以某种形式的产出提供给社会的过程。根据上述定义,下列选项不属于运营活动的是()。
一个好的学者,要么具有很好的学术天赋,要么是经过了长期不懈的后天努力。金灵先生终身致力于学术研究,那么( )。
Mr.Wrightwasthe______presidentofAceConstructionCompany.
WhenRodLavergotbehind,hewould
WhichofthefollowingdetailsinthenewsisCORRECT?
Kathywasauniversitystudent.Likemoststudentsshehadverylittlemoney,butshewantedtobuyacar."IfIcanbuyon
最新回复
(
0
)