首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
admin
2018-06-14
94
问题
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
选项
答案
X只取0,1,2,3各值,为计算概率P{X=i},i=0,1,2,3,设A
i
={第i个部件需要调整}.i=1,2,3.依题意,A
1
,A
2
,A
3
相互独立,且P(A
1
)=0.1,P(A
2
)=0.2,P(A
3
)=0.3. P{X=0}=[*]=0.9×0.8×0.7=0.504, P{X=3}=P(A
1
,A
2
,A
3
)= P(A
1
) P(A
2
) P(A
3
)=0.1×0.2×0.3=0.006, P{X=1}=[*] =0.1×0.8×0.7+0.9×0.2×0.7+0.9×0.8×0.3=0.398. P{X=2}=1一P{X=0}一P{X=1}一P{X=3}=0.092. 于是X的分布函数F(x)为 F(x)=P{X≤x}=[*]
解析
显然X是离散型随机变量,为求X的分布函数F(x),我们应首先求出X的分布律,即X的所有可能取值与相应概率.
转载请注明原文地址:https://www.kaotiyun.com/show/vBW4777K
0
考研数学三
相关试题推荐
设事件A出现的概率为p=0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A出现的次数在450到550次之间的概率α.
假设G={(x,y)|x2+y2≤r2}是以原点为圆心,半径为r的圆形区域,而随机变量X和Y的联合分布是在圆G上的均匀分布.试确定随机变量X和Y的独立性和相关性.
对于任意二事件A1,A2,考虑二随机变量试证明:随机变量X1和X2独立的充分必要条件是事件A1和A2相互独立.
设X1,X2,…Xn,…是独立同分布的随机变量序列,EXi=μ,DXi=σ2,i=1,2,…,令证明:随机变量序列{Yn}依概率收敛于μ.
设{Xn}是一随机变量序列,Xn的密度函数为:
设X1,X2,…,Xn独立同分布,X1的取值有四种可能,其概率分布分别为:p1=1-θ,p2=θ-θ2,p3=θ2-θ3,p4=θ3,记Nj为X1,X2,…,Xn中出现各种可能的结果的次数,N1+N2+N3+N4=n.确定a1,a2,a3,a4使为θ
设二维随机变量(X,Y)的概率密度为则随机变量Z=X-Y的方差DZ为_________.
已知随机变量X1与X2的概率分布,而且P{X1X2=0}=1.(1)求X1与X2的联合分布;(2)问X1与X2是否独立?为什么?
设随机变量X在[0,π]上服从均匀分布,求Y=sinX的密度函数.
设X在[0,2π]上服从均匀分布,求Y=cosX的密度函数.
随机试题
某高校甲、国有企业乙、集体企业丙签订合同决定共同投资设立一家生产型的科技发展有限公司。其中,甲以高科技成果出资,作价15万元,乙以厂房出资,作价20万元,丙以现金12万元出资,后丙因为资金紧张实际出资10万元。根据上述材料,回答下列问题:以非
A.引物酶B.连接酶C.解螺旋酶D.单链DNA结合蛋白原核生物复制过程中起稳定已解开单链作用的是
确认宫颈癌的可靠方法是
28岁经产妇,2年前因胎儿窘迫行剖宫产术,停经36周,腹痛5小时入院,待产过程中宫缩强,诉全腹疼痛,查BP65/45mmHg,P122次/分,全腹压痛、反跳痛,胎体清楚扪及,胎心消失,阴道有鲜血流出。此时的处理应
根据《工程建设项目招标投标活动投诉处理办法》的相关规定,投诉处理决定应当包括()。
(2008年)在微机组成中用于传输信息的总线指的是()。
按照国家标准《生产过程危险和有害因素分类与代码》GB/T13861—2009,危险源可以分为人的因素、物的因素、环境因素和()。
法律意义上的子女,包括()。
重大突发事件是在紧急状态下发生的严重危机事件。它包括重大突发性自然灾害、重大突发性工业事故及灾难性事故、重大突发性社会骚乱事故和重大突发性政治危机。根据上述定义,下列情况属于重大突发性政治危机的是:
春节是节日旋律中最高的音符,人们心灵深处的情绪在这时得到彻底爆发。灯笼、爆竹、春联成了节日的经典形象,绚丽的色彩和欢庆的声浪使春节尽情绽放。围绕着辞旧迎新的喜庆主题,各地________出很多具有地方特色的欢庆方式,一浪推一浪地________着春节气氛。
最新回复
(
0
)