首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X1的分布函数为F1(x),概率密度函数为f1(x),且E(X1)=1,随机变量X的分布函数为F(x)=0.4F1(x)+0.6F1(2x+1),则E(X)=________。
设随机变量X1的分布函数为F1(x),概率密度函数为f1(x),且E(X1)=1,随机变量X的分布函数为F(x)=0.4F1(x)+0.6F1(2x+1),则E(X)=________。
admin
2019-05-19
75
问题
设随机变量X
1
的分布函数为F
1
(x),概率密度函数为f
1
(x),且E(X
1
)=1,随机变量X的分布函数为F(x)=0.4F
1
(x)+0.6F
1
(2x+1),则E(X)=________。
选项
答案
0.4
解析
已知随机变量X
1
的分布函数为F
1
(x),概率密度函数为f
1
(x),可以验证F
1
(2x +1)为分布函数,记其对应的随机变量为X
2
,其中X
2
为随机变量X
1
的函数,且X
2
=
记随机变量X
2
的分布函数为F
2
(x)。
概率密度函数为f
2
(x),所以X的分布函数为
F(x)=0.4F
1
(x) +0.6F
2
(x)
两边同时对x求导得f(x)=0.4f
1
(x)+0.6f
2
(x),于是
∫
—∞
+∞
xf(x)dx=0.4∫
—∞
+∞
xf(x)dx+0.6∫
—∞
+∞
xf
2
(x)dx,
即E(X) =0.4E(X
1
)+ 0.6E(X
2
) =0.4E(X
1
)+
=0.4。
转载请注明原文地址:https://www.kaotiyun.com/show/v6J4777K
0
考研数学三
相关试题推荐
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
设随机变量X,Y都是正态变量,且X,Y不相关,则().
设一部机器一天内发生故障的概率为,机器发生故障时全天停止工作.若一周5个工作日无故障,则可获利10万元;发生一次故障获利5万元;发生两次故障获利0元;发生三次及以上的故障亏损2万元,求一周内利润的期望值.
设总体X的密度函数为f(x)=X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.
设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.
设实二次型f(x1,x2,x3)=(x1一x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数。(I)求f(x1,x2,x3)=0的解;(Ⅱ)求f(x1,x2,x3)的规范形.
曲线y=x(x一1)3(x一2)与x轴围成的图形的面积为()
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1同成平面图形为D2.求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…n),二次型f(x1,x2,…,xn)=xixj。(Ⅰ)记xT=(x1,x2,…,xn),把f(x1,x2,…,xn)=xixj。写成矩阵
随机试题
马克思中学毕业时即表示要“为人类福利而劳动”,毛泽东青年时便立志“以天下为己任”,周恩来在南开中学时提出“为中华崛起而读书”,这些事例告诉我们
中远公司2009年9月30日银行存款日记账余额为1280000元,银行对账单上的余额为1147400元,经过逐笔核对发现有下列未达账项:(1)公司于9月29日将收到的转账支票一张计180000元已向银行进账,银行尚未入账;(2)公司于9
引起玻璃体积血的常见原因应除外
DIE最常见的病因是
我国流行的流行性出血热主要有两种类型:野鼠型和家鼠型,这两种类型造成了3种不同的地区分布:家鼠型、野鼠型和家鼠及野鼠混合存在。为有效预防本病,我国相应地研制了不同型别的流行性出血热细胞培养灭活疫苗,并在实际应用中证实有效。这些不同型别的疫苗共有几种
FIDIC施工合同条件规定,缺陷责任期是自( )开始,至工程师颁发履约证书为止的天数。
设备安装精度是指在安装工程中,为保证整套装置正确联动所需的()。
国务院银行业监管机构或其省一级派出机构,应责令违反审慎经营规则的银行业金融机构限期改正;逾期未改正的,经上述机构负责人批准,采取()措施。
某公司甲车间采用滚动预算法编制制造费用预算。已知2017年各季度的制造费用预算如下表所示:(其中间接材料费用忽略不计)2017年3月31日公司在编制2017年第二季度至2018年第一季度滚动预算时,发现未来的四个季度中将出现以下情况:(1)间接人工费
ClimateChangeScientistspredictincreasingdroughts,floodsandextremeweatherandsaythereisgrowingevidencethathu
最新回复
(
0
)