首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若向量组α,β,γ线性无关;α,β,δ线性相关,则
若向量组α,β,γ线性无关;α,β,δ线性相关,则
admin
2018-07-31
58
问题
若向量组α,β,γ线性无关;α,β,δ线性相关,则
选项
A、α必可由β,γ,δ线性表示.
B、β必不可由α,β,δ线性表示.
C、δ必可由α,β,γ线性表示.
D、δ必不可由α,β,γ线性表示.
答案
C
解析
由部分组与整体组线性相关性的关系,知α,β线性无关.又α,β,δ线性相关,由此知δ可由α,β线性表示:δ=k
1
α+k
2
β=k
1
α+k
2
β+0r,所以(C)正确.
或由α,β,γ线性无关,而α,β,γ,δ线性相关,知δ必可由α,β,γ线性表示.
转载请注明原文地址:https://www.kaotiyun.com/show/v5g4777K
0
考研数学一
相关试题推荐
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设A是m×n阶矩阵,下列命题正确的是().
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22—2y32,且A*+2E的非零特征值对应的特征向量为α=,求此二次型.
设点M1(1,一1,一2),M2(1,0,3),M3(2,1,2),则点M3到向量的距离为___________.
设矩薛A满足(2E一C-1B)AT=C-1,且B=,求矩阵A.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设矩阵A=为A*对应的特征向量.(1)求a,b及α对应的A*的特征值,(2)判断A可否对角化.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A是n阶方阵,A+E可逆,且f(A)=(E—A)(E+A)-1.证明:(1)[E+f(A)](E+A)=2E;(2)f[f(A)]=A.
随机试题
请你自拟信息,写一份邀请信。要求:(1)格式正确;(2)信息量充分;(3)语言规范,表达准确;(4)字数在100左右。
关于石油沥青延度试验,说法错误的是()。
某烟花爆竹厂因生产经营需要,临时招聘了一批搬运工,负责烟花爆竹的搬运工作。这些临时搬运工正式上岗作业前,必须经过()考核合格,取得相应的合格证书。
当理财规划师执业时触犯了法律的规定,行业自律机构通常会对理财规划师采取( )制裁措施。
债券投资的收入一般通过债券的收益率进行衡量,通常用年率表示,包括()。
某零售企业在十几年的经营中通过对国内外零售企业进行考察学习,并不断对自身经验进行总结,制定出一套科学成功的选址程序:在每开设一家新店前,都要利用一年左右的时间对所在区域的人员构成、消费水平、人口增长、居住条件、消费者兴趣爱好、高收入人群比例等进行细致的市场
“孟母三迁”体现了什么样的德育方法?()
人非生而知之者,孰能无惑?惑而不从师,其为惑也,终不解矣。生乎吾前,其闻道也固先乎吾,吾从而师之;生乎吾后,其闻道也亦先乎吾,吾从而师之。吾师道也,夫庸知其年之先后生于吾乎?是故无贵无贱,无长无少,道之所存,师之所存也。
将考生文件夹下RAS\GGG文件夹中的文件MENTS.DOC设置成只读属性。
太原是华北地区重要的历史城市。它坐落于山西省的中部,四周环山,气候温和。太原矿藏和农产品丰富,景色优美。由于历史悠久,名胜古迹遍布太原。金纪念塔(JinMemorialTemple)是为了纪念金国第一个皇帝而建的,因其辉煌的宋代建筑和华美的花园而闻名于
最新回复
(
0
)