首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶方阵,A+E可逆,且 f(A)=(E—A)(E+A)-1. 证明: (1)[E+f(A)](E+A)=2E; (2)f[f(A)]=A.
设A是n阶方阵,A+E可逆,且 f(A)=(E—A)(E+A)-1. 证明: (1)[E+f(A)](E+A)=2E; (2)f[f(A)]=A.
admin
2016-11-03
77
问题
设A是n阶方阵,A+E可逆,且
f(A)=(E—A)(E+A)
-1
.
证明:
(1)[E+f(A)](E+A)=2E;
(2)f[f(A)]=A.
选项
答案
(1)[E+f(A)](E+A)=E+A+f(A)(E+A) =E+A+(E—A)(E+A)
-1
(E+A) =E+A+E—A=2E. (2)f[f(A)]=[E—f(A)][E+f(A)]
-1
.由(1)可知 [E+f(A)]
-1
=[*], 故f[f(A)]=[E一f(A)](E+A)/2=[E一(E—A)(E+A)
-1
](E+A)/2 =(E+A)/2一(E一A)(E+A)
-1
(E+A)/2 =(E+A)/2一(E一A)/2=A.
解析
利用矩阵运算及可逆矩阵的定义证之.
转载请注明原文地址:https://www.kaotiyun.com/show/GHu4777K
0
考研数学一
相关试题推荐
[*]
设A是m×n矩阵,B是n×m矩阵,则齐次线性方程组ABX=O().
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时.证明丨A丨≠0.
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
求幂级数x2n的收敛域及函数.
如下图,连续函数y=f(x)在区间[-3,-2]、[2,3]上图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的上、下半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是().
设y=y(x)是由方程y2+xy+x2一x=0确定的满足y(1)=一1的连续函数,则=_______________.
随机试题
苯二氮革类的中枢抑制作用机制是
参与DNA复制的酶不包括
用混凝土泵输送混凝土是()。
当事人之间发生合同纠纷对仲裁机构的裁决不满意时( )。
施工投资项编码/施工成本项编码,并不是概预算定额确定的分部分项工程的编码,它应综合考虑的因素包括()。
上市公司实际控制人及受其支配的股东未履行报告、公告义务的,上市公司应当自(、)起立即作出报告和公告。
下列消费品中,我国对其征收消费税的有()。
企业发生的下列交易或事项中,不会引起当期资本公积(资本溢价)发生变动的是()。(2013年)
Ifyougodowntothewoodstoday,youmaymeethigh-techtrees—geneticallymodifiedtospeedtheirgrowthorimprovethequalit
Whatdoweknowfromtheconversation?
最新回复
(
0
)