首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[-a,a]上的连续的偶函数且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt. (Ⅰ)证明:F’(x)单调增加. (Ⅱ)当x取何值时,F(x)取最小值? (Ⅲ)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
设f(x)为[-a,a]上的连续的偶函数且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt. (Ⅰ)证明:F’(x)单调增加. (Ⅱ)当x取何值时,F(x)取最小值? (Ⅲ)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
admin
2014-11-26
135
问题
设f(x)为[-a,a]上的连续的偶函数且f(x)>0,令F(x)=∫
-a
a
|x-t|f(t)dt.
(Ⅰ)证明:F’(x)单调增加.
(Ⅱ)当x取何值时,F(x)取最小值?
(Ⅲ)当F(x)的最小值为f(a)一a
2
一1时,求函数f(x).
选项
答案
(Ⅰ)F(x)=∫
-a
a
|x-t|f(t)dt=∫
-a
x
(x—t)f(t)dt+∫
x
a
(t一x)f(t)dt=x∫
-a
x
f(t)dt-∫
-a
a
tf(t)dt+∫
x
a
tf(t)dt-x∫
x
a
f(t)dt=x∫
-a
x
f(t)dt-∫
-a
a
tf(t)dt-∫
a
x
tf(t)dt+x∫
a
x
f(t)dt F’(x)=∫
-a
x
f(t)dt+xf(x)一xf(x)一xf(x)+∫
a
x
f(t)dt+xf(x)=∫
a
x
f(t)dt—∫
t
a
f(t)dt 因为F"(x)=2f(x)>0,所以F’(x)为单调增加的函数. (Ⅱ)因为F’(0)=∫
-a
0
f(x)dx—∫
0
a
∫(x)dx且f(x)为偶函数,所以F’(0)=0,又因为F"(0)>0,所以x=0为F(x)的唯一极小点,也为最小点.故最小值为F(0)=∫
-a
a
|t|f(t)dt=2∫
0
a
tf(t)dt. (Ⅲ)由2∫
0
a
tf(t)dt=f(a)一a
2
一1两边求导得 2af(a)=f’(a)-2a,于是f’(x)一2xf(x)=2x,解得f(x)=[∫2xe
∫-2xdx
dx+C]e
-∫-2xdx
=[*]一1,在2∫
0
a
tf(t)dt=f(a)一a
2
一1中令a=0得f(0)=1,则C=2,于是f(x)=[*]一1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ue54777K
0
考研数学一
相关试题推荐
已知方程组(Ⅰ)与方程组(Ⅱ)是同解方程组,求参数a,b,c.
设A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设,B为同阶可逆矩阵,证明方程组BAx=0与Ax=0同解,并求解方程组BAx=0.
设有两个n维非零向量α=[a1,a2,…,an]T,β=[b1,b2,…bn]T.设C=E-αβT,其中E为n阶单位矩阵,证明:CTC=E=βTα-αβT+ββT的充要条件是αTα=1.
设D是xOy平面上以(1,1),(一1,1)和(一1,一1)为顶点的三角形区域,D1是D在第一象限的部分,则=().
在第一象限的椭圆上求一点,使过该点的法线与原点的距离最大.
设f(u)具有二阶连续导数,且
正方体冰块放在空气中,其边长为m,在温度恒定的情况下,冰块的融化速度(即体积减少速度)与冰块的表面积成正比,比例常数为k>0.设冰块在融化过程中始终保持正方体形状.经过一个小时的融化,冰块的体积减小了四分之一.求冰块完全融化需要的时间.
设y1(x)=x(1—2x),y2(x)=2x(1一x),y3(x)=x(ex一2x)是微分方程y”+p(x)y’+q(x)y=f(x)的3个解,其中p(x),q(x),f(x)是(0,+∞)上的连续函数,求此微分方程及其通解.
X与Y的联合概率分布
随机试题
作品的超验本性构成了它的【】
判断膀胱破裂最简便的检查方法是
压缩试验土样侧向()。
依据煤矿采空区地表剩余变形判别法确定采空区对工程的影响时,对工程的影响程度属于中等的有()。
背景资料:某城市给水工程项目,通过招标投标确定了本市一家具有工程项目资质的施工企业承担该施工任务。施工企业在给水厂站工程施工时制定了以下施工技术要求:(1)水池底板混凝土应分层分次浇筑完成;(2)水池底板混凝土浇筑采用掺外加剂的泵送混凝土时,其坍落
在中国,承担基金行业的自律管理职责的是()。
遗觉象是指()。
一个汉字代表一个音节,所以说汉字是音节文字。
新民主主义革命的动力是()
______snobbishpeople_______youdescribedaretobefoundeverywhere.
最新回复
(
0
)