首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问:当a1,a2,…,an满足何种条件时,二次型f为正定二次型·
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问:当a1,a2,…,an满足何种条件时,二次型f为正定二次型·
admin
2017-04-19
53
问题
设有n元实二次型f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,其中a
i
(i=1,2,…,n)为实数.试问:当a
1
,a
2
,…,a
n
满足何种条件时,二次型f为正定二次型·
选项
答案
1+(一1)
n+1
a
1
a
2
…a
n
≠0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/u8u4777K
0
考研数学一
相关试题推荐
3
某保险公司开展养老保险业务,当存入R。(单位:元)时,t年后可得到养老金R0=R0eat(a>O)(单位:元),另外,银行存款的年利率为r,按连续复利计息,问t年后的养老金现在价值是多少(即养老金的现值是多少)?
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程(d2x)/(dy2)+(y+sinx)(dx/dy)=0变换为y=y(x)满足的微分方程;
已知函数y=y(x)由方程ey+6xy+x2-1=0确定,则y"(0)=_________.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设A是m×n矩阵,B是,n×m矩阵,则
已知4阶方阵A=(a1,a2,a3,a4),a1,a2,a3,a4均为4维列向量,其a2,a3,a4线性无关,a1=2a1-a3,如果β=a1+a2+a3+a4,求线性方程组Ax=β的通解.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
行列式
随机试题
蠕变极限和持久强度有什么不同?
在细胞膜蛋白质的帮助下,将其他蛋白质分子选择性转运到细胞内的物质转运方式是
根据《兽药经营质量管理规范》,禁止出库销售的兽药不包括()
6~12个月儿童每人氟的适宜和安全摄入量(mg/d)是
建立职业健康安全与环境管理体系的前三个步骤是:①人员培训;②成立工作组;③领导决策。仅就上述三项工作而言,其正确的顺序为()。
可能对基金持有人权益及基金份额的交易价格产生重大影响的事项不包括()。
给定资料1.一颗来自澳大利亚塔斯马尼亚岛的樱桃,从靠泊洋山保税港区码头到查验后放行,最快需要多长时间?上海给出的答案是:6小时。如此迅疾的速度,得益于上海自贸区成立3年多以来致力于攻坚的核心任务——制度创新。上海自贸试验区建设3年多以来
A.positiveB.leftC.resultPhrases:A.afraidtheircountrieswillbe【T1】__________behindB.Whatwas
Thebankchargesa______tocoverthecostofbookkeeping.
•ReadthearticlebelowabouttheImport-ExportBalance.•Foreachquestion(31-40),writeonewordinCAPITALLETTERSonyou
最新回复
(
0
)