首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A=.正交矩阵Q使得QTAQ是对角矩阵,并且Q的第1列为(1,2,1)T.求a和Q.
A=.正交矩阵Q使得QTAQ是对角矩阵,并且Q的第1列为(1,2,1)T.求a和Q.
admin
2018-11-20
49
问题
A=
.正交矩阵Q使得Q
T
AQ是对角矩阵,并且Q的第1列为
(1,2,1)
T
.求a和Q.
选项
答案
Q
-1
AQ=Q
T
AQ是对角矩阵,说明Q的列向量都是A的特征向量,于是(1,2,1)
T
也是A的特征向量. [*] (1,2,1)
T
和(2,5+a,4+2a)
T
相关,得a=一1,并且(1,2,1)
T
的特征值为2. [*] A的特征值为2,5,一4.下面来求它们的单位特征向量. [*]是属于2的单位特征向量. [*] 则(1,一1,1)
T
是属于5的特征向量,单位化得α
2
=[*](1,一1,1)
T
. [*] 则(1,0,一1)
T
是属于一4的特征向量,单位化得α
3
=[*](1,0,一1)
T
. 则Q=(α
1
,α
2
,α
3
).(不是唯一解,例如(α
1
,α
3
,α
2
),(α
1
,一α
2
,一α
3
),(α
1
,一α
3
,一α
2
)等也都适合要求.)
解析
转载请注明原文地址:https://www.kaotiyun.com/show/twW4777K
0
考研数学三
相关试题推荐
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a一2,a一1,则a=________.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A一1的特征值并判断A一1是否可对角化.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求|A*+2E|.
设矩阵为A*对应的特征向量.判断A可否对角化.
设有三个线性无关的特征向量,则a=________.
设n阶矩阵A满足A2+2A一3E=0.求:(A+4E)一1.
设A=,B为三阶非零矩阵,且AB=0,则r(A)=________.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;
随机试题
在我国,国家对需要重点扶持的高新技术企业征收企业所得税的税率为
女性,28岁,痛经3年,进行性加重,G4P2。妇科检查:子宫正常大小,活动差,子宫直肠凹部位触及2个痛性硬结节,右侧附件区触及4cm直径大小囊性肿物,有一定的活动度,无明显压痛。引起该病例痛经的主要原因是
哪个地区的居住建筑节能设计要考虑外窗的遮阳系数?
下列有关报警阀组的安装距离要求,不正确的是()。
某企业于2008年2月1日购入机器一台,价值为200000元,预计使用年限为10年,预计残值为20000元,预计清理费用为5000元,该企业采用年限平均法计提折旧。该机器2008年2月底应计提的折旧额是( )元。
个人耐用消费品贷款期限一般在()年以内,最长为()年(含)。
通过将人民币挖补、涂改、剪贴、拼凑、揭页等手段制成的人民币属于()。
达利是__________主义代表画家。
黄教
记忆是——的印留、保持和再作用的过程。
最新回复
(
0
)