首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Z=X+Y的方差.
设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Z=X+Y的方差.
admin
2019-05-08
79
问题
设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Z=X+Y的方差.
选项
答案
解一 令G={(x,y)|0≤x≤1,0≤y≤1,x+y≥1}(见图3.4.2.1).由题设知(X,Y)在G上服从均匀分布.由定义3.3.4.1及S
G
=1/2,得到其概率密度f(x,y)为 [*] 注意到G及D关于y=x对称,有 [*] 利用这些性质及命题3.4.2.1,得到 [*] 故D(Z)=D(X+Y)=E[(X+Y)
2
]-[E(x+y)]
2
=11/6-16/9=1/18. 解二 下用求不相互独立的两个随机变量X与Y之和Z=X+Y的卷积公式(3.3.3.1)式 [*] 求出其概率密度f(z).为此改写f(x,y).由 [*] 在xOz平面上f取正值的区域为0≤x≤1,O≤z-x≤1,z≥1所围成的区域G
1
={(x,y)|0≤x≤1,0≤z-x≤1,z≥1}(见图3.4.2.2).因而 [*] 故 [*] 于是 [*] D(X+Y)=D(Z)=E(Z
2
)-[E(Z)]
2
=E(X+Y)
2
-[E(X+Y)]
2
=11/6-(4/3)
2
=1/18. 注:定义3.3.4.1 设G是有界平面区域,其面积为S
G
,若二维随机变量(X,Y)的概率密度函数为 [*] 则称(X,Y)在G上服从二维均匀分布. 命题3.4.2.1 [*] 其中f(x,y)为(X,Y)的联合概率密度.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/toJ4777K
0
考研数学三
相关试题推荐
证明:当x>1时,.
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2)所确定,其中f是可微函数,计算并化成最简形式.
设A、B是两个随机事件,且P(A)==________。
设随机变量X的密度函数为φ(x),且φ(一x)=φ(x),F(x)为X的分布函数,则对任意实数a,有()
设随机事件A,B,C两两独立,且P(A),P(B),P(C)∈(0,1),则必有()
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
利用变换x=arctant将方程cos4x+cos2x(2-sin2x)+y=tanx化为y关于t的方程,并求原方程的通解.
设曲线y=ax2(x≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D.求(Ⅰ)D绕x轴旋转一周所成的旋转体的体积V(a);(Ⅱ)a为何值时,V(a)取到最大值?
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1同成平面图形为D2.求此时的D1+D2.
随机试题
腹中冷痛,手足厥冷,身体疼痛,内外皆寒,治疗宜用()(2007年第55题)
3~5mm规格细集料,应严格控制小于()颗粒含量。
股票的基本特征包括()。
企业销售商品,提供劳务等主营业务的成本通过“主营业务成本”账户核算,该账户期末余额在借方。()
甲公司为增值税一般纳税人,适用的增值税税率为13%,2019年12月1日与乙公司签订产品销售合同。合同约定,甲公司向乙公司销售A产品10件,单价6000元(不含增值税税额),单位成本价为5000元;乙公司在产品发出后1个月内支付款项,乙公司收到A产品后
根据上海证券中央登记结算公司的规定,证券公司营业部在受理投资者账户挂失时,应按既定的费率收取费用。( )
证券公司操纵证券交易价格会受到中国证监会及其派出机构处罚,但不会被追究刑事责任。()
A.生理盐水B.0.3%过氧化氢溶液C.2%碳酸氢钠溶液D.1:5000高锰酸钾溶液催眠药中毒的洗胃液宜选用
当积差相关系数r=0时,对两个变量之间关系的最佳解释是()
OnefeatureofnewfoundwealthinthedevelopingworldhasbeentheembraceofWesternluxurylabels.Butsincetheglobalecono
最新回复
(
0
)