首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)上有定义,则下述命题中正确的是( )
设函数f(x)在(-∞,+∞)上有定义,则下述命题中正确的是( )
admin
2018-01-12
65
问题
设函数f(x)在(-∞,+∞)上有定义,则下述命题中正确的是( )
选项
A、若f(x)在(-∞,+∞)上可导且单调增加,则对一切x∈(-∞,+∞),都有f’(x)>0。
B、若f(x)在点x
2
处取得极值,则f’(x
0
)=0。
C、若f’’(x
0
)=0,则(x
0
,f(x
0
))是曲线y=f(x)的拐点。
D、若f’(x
0
)=0,f’’(x
0
)=0,f’’’(x
0
)≠0,则x
0
一定不是f(x)的极值点。
答案
D
解析
若在(-∞,+∞)上f’(x)>0,则一定有f(x)在(-∞,+∞)上单调增加,但可导函数f(x)在(-∞,+∞)上单调增加,可能有f’(x)≥0。例如f(x)=x
3
在(-∞,+∞)上单调增加,f’(0)=0。故不选A。
f(x)若在x
0
处取得极值,且f’(x
0
)存在,则有f’(x
0
)=0,但当f(x)在x
0
处取得极值,在x
0
处不可导,就得不到f’(x
0
)=0,例如f(x)=|x|在x
0
=0处取得极小值,它在x
0
=0处不可导,
故不选B。
如果f(x)在x
0
处二阶导数存在,且(x
0
,f(x
0
))是曲线的拐点坐标,则f’’(x
0
)=0,反之不一定,例如f(x)=x
4
在x
0
=0处f’’(0)=0,但f(x)在(-∞,+∞)没有拐点,故不选C。由此选D。
转载请注明原文地址:https://www.kaotiyun.com/show/tgr4777K
0
考研数学一
相关试题推荐
设函数f(x)满足xf’(x)一2f(x)=一x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
设k为常数,方程在(0,+∞)内恰有一根,求k的取值范围.
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)一f(x)=0在(0,1)内有根.
求二阶常系数线性微分方程y’’+λy’=2x+1的通解,其中λ为常数.
n维向量组a1,a2…,as(3≤s≤n)线性无关的充要条件是()
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(II)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中,正确的是()
设B是秩为2的5×4矩阵,α1=[1,1,2,3]T,α2=[一1,1,4,一1]T,α3=[5,一1,一8,9]T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量.证明:ξ,η,正交.
证明:若三事件A,B,C相互独立,则A∪B及A—B都与C独立.
随机试题
汽车销售人员可以对头发进行染发。()
简述站点推广有哪些方式。
证券公司为加强自律管理,应严格保密纪律,有机会获取内幕信息的从业人员不泄露、不利用内幕信息。()
下列关于消费税纳税人的说法,正确的有()。
校长:老师:园丁()
统计图:根据下面的每一个统计图,分别回答它后面的题目。卫生领域中民间投资与中央政府投资的比例为()。
小王周末组织朋友自助游,费用均摊。结账时,如果每人付450元,则多出100元;如果小王的朋友每人付430元,小王自己要多付60元才刚好。这次活动人均费用是()。
奥驳匹克蚊子是蚊子的一个变种,最近在美国东南部衍居,它没有当地的沼泽蚊子分布广。沼泽蚊子与奥驳匹克蚊子都能携带有时能使人致命的病毒,但奥驳匹克蚊子对公众健康危害更大。下列选项除哪个外,如果正确,都能提供附加信息来支持以上所做出的对公共健康产生危害的判断?
A、告别B、聊天C、打招呼D、谈生意A“多保重”常常用在告别的时候,有多照顾自己的意思。
Bigcitiestodayareconfrontedwithveryseriousproblems.Transportisa【C1】______difficulty:someplannersbelievein【C2】____
最新回复
(
0
)