首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)上有定义,则下述命题中正确的是( )
设函数f(x)在(-∞,+∞)上有定义,则下述命题中正确的是( )
admin
2018-01-12
47
问题
设函数f(x)在(-∞,+∞)上有定义,则下述命题中正确的是( )
选项
A、若f(x)在(-∞,+∞)上可导且单调增加,则对一切x∈(-∞,+∞),都有f’(x)>0。
B、若f(x)在点x
2
处取得极值,则f’(x
0
)=0。
C、若f’’(x
0
)=0,则(x
0
,f(x
0
))是曲线y=f(x)的拐点。
D、若f’(x
0
)=0,f’’(x
0
)=0,f’’’(x
0
)≠0,则x
0
一定不是f(x)的极值点。
答案
D
解析
若在(-∞,+∞)上f’(x)>0,则一定有f(x)在(-∞,+∞)上单调增加,但可导函数f(x)在(-∞,+∞)上单调增加,可能有f’(x)≥0。例如f(x)=x
3
在(-∞,+∞)上单调增加,f’(0)=0。故不选A。
f(x)若在x
0
处取得极值,且f’(x
0
)存在,则有f’(x
0
)=0,但当f(x)在x
0
处取得极值,在x
0
处不可导,就得不到f’(x
0
)=0,例如f(x)=|x|在x
0
=0处取得极小值,它在x
0
=0处不可导,
故不选B。
如果f(x)在x
0
处二阶导数存在,且(x
0
,f(x
0
))是曲线的拐点坐标,则f’’(x
0
)=0,反之不一定,例如f(x)=x
4
在x
0
=0处f’’(0)=0,但f(x)在(-∞,+∞)没有拐点,故不选C。由此选D。
转载请注明原文地址:https://www.kaotiyun.com/show/tgr4777K
0
考研数学一
相关试题推荐
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
计算,其中D为单位圆x2+y2=1所围成的第一象限的部分.
设收敛,举例说明级数不一定收敛;若是正项收敛级数,证明一定收敛.
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设k为常数,方程在(0,+∞)内恰有一根,求k的取值范围.
设fn(x)=x+x2+…+xn(n≥2).证明方程fn(x)=1有唯一的正根xn;
求极限
设总体服从U[0,θ],X1,X2,…,Xn为总体的样本.证明:为θ的一致估计.
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A能否相似于对角阵,说明理由.
飞机以匀速v沿y轴正向飞行,当飞行到原点时被发现,随即从x轴上点(x0,y0)处发射导弹向飞机击去,其中x0>0,若导弹的速度方向始终指向飞机,其速度大小为常数2v求导弹运行轨迹满足的微分方程及初始条件;
随机试题
环境教育是环境管理的重要组成部分。
(2011年4月)在我国,公务员降职不是一种行政处分。因此,______。
心源性哮喘常见于
作业治疗中的一对一治疗一般用在何时
[2013年,第12题]正项级数的部分和数列{Sn}(Sn=a1+a2+…+an)有上界是该级数收敛的()。
甲公司在与乙公司交易中获得由乙公司签发的银行承兑汇票一张,付款人为丙银行。甲公司向丁某购买了一批货物,将汇票背书转让给丁某以支付货款,并记载“不得转让”字样。后丁某又将此汇票背书给张某,张某在向丙银行提示承兑时遭拒绝。根据票据法律制度的规定,张某可对其行使
下列较多地被运用在艺术领域的课程目标是()
第一个问题是有关比较标的的,即转基因食品和非转基因食品之间进行比较时,真正进行比较的是什么。现在的比较仅仅是衡量食品中一些主要和次要的营养物质、已知毒素和其他一些破坏营养物质的成分等的含量。但是,目前并没用一个标准的清单列出需要衡量的物质和不需要衡量的物质
根据下面材料回答问题。2003--2007年间,SCI收录中国科技论文数的年均增长率约为()。
You’dthinkPaulineHordwouldhaveservedhertimebynow.Afterall,sherecentlycelebratedher90thbirthday,andbythetim
最新回复
(
0
)