首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,a)内可导,求证:f(x)在(-∞,a)内至少有一个零点.
设f(x)在(-∞,a)内可导,求证:f(x)在(-∞,a)内至少有一个零点.
admin
2018-06-27
80
问题
设f(x)在(-∞,a)内可导
,求证:f(x)在(-∞,a)内至少有一个零点.
选项
答案
只需由所给条件证明:[*]x
1
与x
2
,使得f(x
1
)>0,f(x
2
)<0即可. 由极限的不等式性质及[*]确定x<a,x靠近a时f(x)的符号,由微分中值定理(联系函数和它的导数)及[*]=β<0确定x<0,|x|充分大时f(x)的符号. 由极限的不等式性质,[*]>0,当x∈[a-δ,a)时[*],即f(x)<0,也就有f(a-δ)<0.[*]x
0
<a-δ,当x≤x
0
时f’(x)≤[*]<0.于是由微分中值定理知,当x<x
0
,[*]∈(x,x
0
)使得 f(x)=f(x
0
)+f’(ξ)(x-x
0
)≥f(x
0
)+[*](x-x
0
), 由此可得[*]x
1
<a-δ使得f(x
1
)>0. 在[x
1
,a-δ]上应用连续函数零点存在性定理f(x)在(x
1
,a-δ)上至少存在一个零点.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/tZk4777K
0
考研数学二
相关试题推荐
求
设f(x)=x2eax在(0,+∞)内有最大值1,则α=_______.
设函数f(u)具有2阶连续导数,z=f(excosy)满足=(4z+excosy)e2x.若f(0)=0,f’(0)=0,求f(u)的表达式.
微分方程yy’’+y’2=yy’满足初始条件的特解是_________.
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组(α1,α2)x=β有唯一解,并求该解;
设D为曲线y=x3与直线y=x所围成的两块区域,计算
设有三元方程xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程
(2007年试题,24)设三阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,又α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A2一4A3+E,其中E为三阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…).(1)证明存在,并求该极限;(2)计算
设f(x0)≠0,f(x)在x=x0连续,则f(x)在x0可导是|f(x)|在x0可导的()条件.
随机试题
下列关于孕妇感染弓形虫的描述正确的是
按检验人员分,质量检验可分为()。
由于施工技术方案未经分析论证,贸然组织施工等原因造成的施工质量事故属于()。
通货膨胀将对个人理财产生影响,下列说法错误的是()。
孔子要求“温故而知新”“学而时习之”这体现了在教学中应该贯彻的原则是()。
下列说法中能体现唯物主义和唯心主义根本分歧的是()。
马克思恩格斯认为无产阶级革命至少将在几个主要的资本主义国家内同时发生的依据是()
用配方法化下列二次型为标准型(1)f(x1,x2,x3)=x12+2x22+2x1x2-2x1x3+2x2x3.(2)f(x1,x2,x3)=x1x2+x1x3+x2x3.
【F1】Aleakedstudyexamininggenetically-modifiedcornrevealsthatthelab-madealternativetoorganiccropscontainsastartli
在ARM汇编语言程序设计中,经常用到分支程序设计,以下不属于分支指令的是()。
最新回复
(
0
)