首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,a)内可导,求证:f(x)在(-∞,a)内至少有一个零点.
设f(x)在(-∞,a)内可导,求证:f(x)在(-∞,a)内至少有一个零点.
admin
2018-06-27
63
问题
设f(x)在(-∞,a)内可导
,求证:f(x)在(-∞,a)内至少有一个零点.
选项
答案
只需由所给条件证明:[*]x
1
与x
2
,使得f(x
1
)>0,f(x
2
)<0即可. 由极限的不等式性质及[*]确定x<a,x靠近a时f(x)的符号,由微分中值定理(联系函数和它的导数)及[*]=β<0确定x<0,|x|充分大时f(x)的符号. 由极限的不等式性质,[*]>0,当x∈[a-δ,a)时[*],即f(x)<0,也就有f(a-δ)<0.[*]x
0
<a-δ,当x≤x
0
时f’(x)≤[*]<0.于是由微分中值定理知,当x<x
0
,[*]∈(x,x
0
)使得 f(x)=f(x
0
)+f’(ξ)(x-x
0
)≥f(x
0
)+[*](x-x
0
), 由此可得[*]x
1
<a-δ使得f(x
1
)>0. 在[x
1
,a-δ]上应用连续函数零点存在性定理f(x)在(x
1
,a-δ)上至少存在一个零点.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/tZk4777K
0
考研数学二
相关试题推荐
设D={(x,y)|x2+y2≤1},将二重积分化为定积分;
求
设x=Fcosθ,y=rsinθ.则直角坐标系xOy中的累次积分可化为极坐标系(r,θ)中的累次积分是____________.
设且B=P-1AP.求矩阵A的特征值与特征向量;
曲线L的极坐标方程是r=θ,则L在点(r,θ)=(π/2,π/2)处的切线的直角坐标方程是__________.
设f(x)具有二阶连续导数,f(0)-0,f’(0)=0,f’’(0)>0.在曲线y=f(x)上任意一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距记为u,求
设函数f(x)在闭区间[a,b]上连续,且在(a,6)内有f’(x)>0,证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形的而积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕,,轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体).(注:
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
设f(x)在区间[a,b]上连续,且f(x)>0,则函数在(a,b)内的零点个数为()
随机试题
压缩比:
定积分的值是[].
A.国家药品监督管理部门B.省级药品监督管理部门C.市级药品监督管理部门D.县级药品监督管理部门境内第三类医疗器械由哪个部门审批核发医疗器械注册证
水泥混凝土路面板横向缩缝的构造形式有()
GB18218-2000《重大危险源辨识》标准不适用于核设施、军事设施、()、危险物品的运输。
下列关于城市固体废物的说法错误的是()。
借助于内部语言在头脑中进行认知活动的方式是()。
简述孔子的“学而优则仕”思想及其历史影响。
设un收敛,则下列正确的是().
下列描述中正确的是
最新回复
(
0
)