首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值,λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵. (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B.
设3阶实对称矩阵A的特征值,λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵. (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B.
admin
2016-10-20
68
问题
设3阶实对称矩阵A的特征值,λ
1
=1,λ
2
=2,λ
3
=-2,且α
1
=(1,-1,1)
T
是A的属于λ
1
的一个特征向量.记B=A
5
-4A
3
+E,其中E为3阶单位矩阵.
(Ⅰ)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B.
选项
答案
(Ⅰ)由Aα=λα有A
n
α=λ
n
α.那么,对于Aα
1
=λ
1
α
1
=α
1
,有 Bα
1
=(A
5
-4A
32
+E)α
1
=A
5
α
1
-4A
3
α
1
+α
1
=(λ
1
5
-4λ
1
3
+1)α
1
=-2α
1
. 因此,向量α
1
是矩阵B属于特征值λ=-2的特征向量. 类似地,对λ
2
=2,λ
3
=-2有:若Aα=λ
2
α,则Bα=(λ
2
5
-4λ
2
3
+1)α=α; 若Aβ=λ
3
β,则Bβ=(λ
3
5
-4λ
3
3
+1)β=β,那么α,β是矩阵B属于特征值λ=1的特征向量.因α,β是矩阵A不同特征值的特征向量,因此它们线性无关.从而矩阵B的特征值是:-2,1,1,且矩阵B属于特征值λ=-2的特征向量是k
1
α
1
(k
1
≠0). 又由A是实对称矩阵知,B是实对称矩阵.那么B的属于特征值λ=1与λ=-2的特征向量应当相互正交.设矩阵B属于λ=1的特征向量α=(x
1
,x
2
,x
3
)
T
,则 x
1
-x
2
+x
3
=0. 解此方程组得基础解系α
2
=(1,1,0)
T
,α
3
=(-1,0,1)
T
.故矩阵B属于λ=1的特征向量是k
2
α
2
+k
3
α
3
(k
2
,k
3
不全为0). (Ⅱ)令P=(α
1
,α
2
,α
3
),有P
-1
BP= [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/tYT4777K
0
考研数学三
相关试题推荐
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设A是n×m矩阵,B是m×n矩阵,其中n
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
设A,B是同阶正定矩阵,则下列命题错误的是().
设f(x,y)在区域D上连续,(xo,yo)是D的一个内点,Dr是以(xo,yo)为中心以r为半径的闭圆盘,试求极限
设半径为r的球的球心在半径为a的定球面上,试求r的值,使得半径为r的球的表面位于定球内部的那一部分的面积取最大值.
试求常数a和b的值,使得
设A与B均为n,阶矩阵,且A与B合同,则().
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
随机试题
MF型手提式干粉灭火器,按充装的质量分有()种型号。
大量心包积液发生心脏压塞时,解除压塞的最快速治疗措施是
孕妇分娩过程中,出现不协调性子宫收缩乏力,正确的处理是
A、新药B、仿制药C、非处方药D、上市药品E、国家基本药物经国家药品监督管理部门审查批准并发给生产批准文号或进口药品注册证书的药品制剂为
筛选预测水质因子的依据有()
对于表见代理行为订立合同的说法中,正确的是()。
下列选项中( )是评估无形资产使用频率最高的方法。
未依法为劳动者缴纳社会保险费的,劳动者可以解除劳动合同。()
德育是促进个体道德自主建构的价值引导活动。()
某公司去年初开始实施一项“办公用品节俭计划”,每位员工每月只能免费领用限量的纸笔等各类办公用品。年末统计时发现,公司用于各类办公用品的支出较上年度下降了30%。在未实施该计划的过去5年间,公司年平均消耗办公用品10万元。公司总经理由此得出:该计划去年已经为
最新回复
(
0
)