首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有2个四元齐次线性方程组: 方程组①和(Ⅱ)是否有非零公共解?若有,求出所有的非零公共解?若没有,则说明理由.
设有2个四元齐次线性方程组: 方程组①和(Ⅱ)是否有非零公共解?若有,求出所有的非零公共解?若没有,则说明理由.
admin
2016-12-16
118
问题
设有2个四元齐次线性方程组:
方程组①和(Ⅱ)是否有非零公共解?若有,求出所有的非零公共解?若没有,则说明理由.
选项
答案
关于(Ⅰ)和(Ⅱ)的公共解,可以用下列几种方法求之. 把(Ⅰ)、(Ⅱ)联立起来直接求解,设联立方程组的系数矩阵为A,用初等行变换将其化为含最高阶单位矩阵的矩阵,直接写出其基础解系,从而求出所有的非零公共解. [*] 由于n一r(A)=4一3=1,基础解系是[一1.,1,2,1]
T
,从而方程组(Ⅰ)、(Ⅱ)有公共解,且所有的非零公共解为 k[一1,1,2,1]
T
,k是任意非零实数: 通过(I)与(Ⅱ)各自的通解寻找公共解,为此,先求方程组(Ⅱ)的基础解系为 η
1
=[0,1,1,0]
T
,η
2
=[一1,一1,0,1]
T
. 下求方程组(Ⅰ)的基础解系,由[*]知,其基础解系含2个解向量: ξ
1
=[0,0,1,0]
T
,ξ
2
=[一1,1,0,1]
T
. 那么k
1
ξ
1
+k
2
ξ
2
,l
1
η
1
+l
2
η
2
分别是(Ⅰ)、(Ⅱ)的通解,令其相等,则有 k
1
[0,0,1,0]
T
+k
2
[一1,1,0,1]
T
=l
1
[0,1,1,0]
T
+l
2
[一1,一1,0,1]
T
, 由此得 [一k
2
,k
2
,k
1
,k
2
]
T
=[一l
2
,l
1
一l
2
,l
1
,l
2
]
T
. 比较两个向量对应分量得到k
1
=l
1
=2k
2
=2l
2
所有非零公共解是 2k
2
[0,0,1,0]
T
+k
2
[一1,1,0,1]
T
=k
2
[一1,1,2,1]
T
, 其中k
2
为非零任意常数.
解析
两个齐次线性方程组的公共解可用多种方法求得.
转载请注明原文地址:https://www.kaotiyun.com/show/tBH4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,且
试问:a为何值时,函数f(x)=asinx+1/3sin3x在x=π/3处取得极值?它是极小值还是极大值?并求此极值.
对于函数f(x),如果存在一点c,使得f(c)=c,则称c为f(x)的不动点.(1)作出一个定义域与值域均为[0,1]的连续函数的图形,并找出它的不动点;(2)利用介值定理证明:定义域为[0,1],值域包含于[0,1]的连续函数必定有不动点.
设l1=(1,1),l2=(-1,1),分别求出函数z=xy在点(0,0)处沿方向l1和方向l2的二阶方向导数.
已知点A(2,1,4)、B(4,3,10),写出以线段AB为直径的球面方程.
证明:函数f(x)=1/xsin1/x在区间(0,1]内无界,但当x→0+时这个函数不是无穷大.
求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示:α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10);
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=min(X,Y)的分布函数为().
随机试题
一位50岁的正视眼者,理论上应给老视镜片度数为
单克隆抗体目前效果较好的纯化方法
我国货币政策的制定者和执行者是()。
2013年1月1日起,企业对其确认为无形资产的某项非专利技术按照5年的期限进行摊销,由于替代技术研发进程的加快,2014年1月,企业将该无形资产的剩余摊销年限缩短为2年,这一变更属于()。
以下有关城市建设的表述,错误的是()。
篮球队教练规定,如果1号队员上场而且3号队员没有上场,那么,5号与7号队员中至少要有1人上场。如果教练的规定得到彻底贯彻,1号队员没有上场的充分条件是以下哪一项?
1000BaseSX是一种使用(1)_____作为信号源的网络介质技术,收发器上所配置的激光传输器(2)_____,系统采用(3)_____编码方案。(1)_____A.长波激光B.短波激光C.红外线D.微波
按照需求功能的不同,信息系统已形成多种层次,计算机应用于管理是开始于
Woman:You’vegotyourapartmentfurnished,haven’tyou?Man:Yes.IboughtsomeusedfurnitureattheSundaymarket.Anditwas
【B1】【B7】
最新回复
(
0
)