首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求齐次线性方程组的基础解系.
求齐次线性方程组的基础解系.
admin
2019-01-05
72
问题
求齐次线性方程组
的基础解系.
选项
答案
解一 用高斯消元法求之.对系数矩阵进行初等行变换化为行阶梯形矩阵 [*] 由非零行的第1个非零元素所在的列可知x
1
,x
2
,x
3
为独立变量,x
2
,x
3
为自由变量,则用自由变量表示的独立变量的等价方程组为 [*] 令x
2
=1,x
3
=0,代入方程组①得到解向量[x
1
,x
2
,x
3
,x
4
,x
5
]=[-1,1,0,0,0]
T
=α
1
. 令x
2
=0,x
5
=1,代入方程组①得到另一解向量[x
1
,x
2
,x
3
,x
4
,x
5
]
T
=[-1,0,-1,0,1]
T
=α
2
,该方程组的一个基础解系为 α
1
=[-1,1,0,0,0]
T
, α
2
=[-1,0,-1,0,1]
T
. 解二 用简便求法求之.为此,用初等行变换将A化成含最高阶单位矩阵的矩阵,即 [*] 其中A
1
已是含最高阶(三阶)单位矩阵的矩阵,而且含有2个三阶单位矩阵,第一个是在第1,2,3行,第1,3,4列;第2个是在第1,2,3行,第2,3,4列.为方便计,取第1个单位矩阵计算.除单位矩阵所在的列以外,A
1
中还有两列,因而一个基础解系含有2个解向量α
1
,α
2
.因第1个单位矩阵在第1,3,4列,故α
1
,α
2
的第1,3,4个元素分别为第2列、第5列的前3个元素反号, 即 α
1
=[-1,a
12
,-0,-0,a
15
]
T
=[-1,a
12
,0,0,a
15
]
T
, α
2
=[-1,a
22
,-1,-0,a
25
]
T
=[-1,a
22
,-1,0,a
25
]
T
. 而α
1
与α
2
中的第2、5个元素a
ij
(i=1,2;j=2,5)依次组成二阶单位矩阵[*]即α
1
=[-1,1,0,0,0]
T
,α
2
=[-1,0,-1,0,1]
T
为所求的一个基础解系.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/t4W4777K
0
考研数学三
相关试题推荐
∫-ππ(sin3x+)dx=_______.
设,B为三阶非零矩阵,的解向量,AX=a3有解.(1)求常数a,b.(Ⅱ)求BX=0的通解.
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,一3,0,则|B-1+2E|=_________.
设un(x)满足的和函数.
设A为三阶实对称矩阵,为方程组AN=0的解,为方程组(2E—A)X=0的一个解,|E+A|=0,则A=___________.
设随机变量X服从参数为λ的指数分布,G(x)是区间[0,1]上均匀分布的分布函数,证明随机变量Y=G(X)的概率分布不是区间[0,1]上的均匀分布.
某个人参加跳高项目的及格选拔赛,规定一旦跳过指定高度就被认为及格而被入选,但是限制每人最多只能跳6次.若6次均未过竿,则认定其为落选.如果一位参试者在该指定高度的过竿率为0.6,求他在测试中所跳次数的概率分布.
设f(x)在任意点x0∈(一2,+∞)有定义,且f(一1)=1,a为常数,若对任意x,x0∈(一2,+∞)满足则函数f(x)在(一2,+∞)内
已知α=(1,1,一1)T是矩阵的特征向量,则x=__________.
设|x|≤1,由拉格朗日中值定理,存在θ∈(0,1),使arcsinx=.
随机试题
语言符号的结构必须是按照时间先后顺序依次出现,这是语言符号的()
贲门长轴扫查的部位是
下列哪项发生突变时可引起单一性生长激素缺乏症
甲房地产经纪公司(以下简称甲公司)在某城市开设了多家连锁门店,采用计算机网络系统管理房源信息,建立客户数据库管理客户信息。张某看到甲公司在网络上发布的房源信息,看中了其中一套住房,但对该套住房出售价格有些不满意,于是到门店咨询。甲公司房地产经纪人李某接待了
FIDIC合同条件下可以给承包商合理延长竣工时间的条件通常可能包括()。
采用外防外贴法铺贴卷材防水层,应()。
简述计算机网络分层结构的特点。
被告人顾某(男,36岁,某市公安分局行政拘留所看守人员),2008年8月18日在某市公安局看守所值班时,违反公安人员执行任务时严禁饮酒的规定,私自将该所招待修建工人喝的白酒倒出半瓶(约3两)自饮,醉倒在值班室的床上,造成关押在该所7号监号内的叶某、余某等1
I’dratheryou______me.You’vemadethematteralltheworse.
MysisterandIlookedforwardtonewclothesfortheNewYear.Butonedaymymothersaid,"Listen,children.Wedon’thaveeno
最新回复
(
0
)