首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=[a1,a2,…,a2]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求: A能否相似于对角矩阵,说明理由.
设向量α=[a1,a2,…,a2]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求: A能否相似于对角矩阵,说明理由.
admin
2018-09-25
53
问题
设向量α=[a
1
,a
2
,…,a
2
]
T
,β=[b
1
,b
2
,…,b
n
]
T
都是非零向量,且满足条件α
T
β=0,记n阶矩阵A=αβ
T
,求:
A能否相似于对角矩阵,说明理由.
选项
答案
A不能相似于对角矩阵,因α≠0,β≠0,故A=αβ
T
≠0,r(A)=r≠0(其实r(A)=1).从而对应于特征值λ=0(n重)的线性无关的特征向量的个数是n-r≠n个,故A不能相似对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/slg4777K
0
考研数学一
相关试题推荐
设一批零件的长度服从正态分布N(μ,σ2),其中σ2已知,μ未知.现从中随机抽取n个零件,测得样本均值,则当置信度为0.90时,判断μ是否大于μ0的接受条件为(ua满足dt=α)
已知A=是正定矩阵,证明△=>0.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(Ⅰ)计算PTDP,其中P=(Ⅱ)利用(Ⅰ)的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明你的结论.
设A是m×n矩阵,B=λE+ATA,证明当λ>0时,B是正定矩阵.
证明二次型xTAx正定的充分必要条件是A的特征值全大于0.
设二次型f(x1,x2,x3)=+2x1x3—2x2x3,(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为,求a的值.
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xjxj.(Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式;(Ⅱ)判断
随机试题
乙酰水杨酸中水杨酸检查法药物中氯化物检查法
隔日1次的外文缩写是()。
股份有限公司的认股人在下列哪些情形下可以抽回股本?()。
属于测量装置检定内容和项目的是()。
国有土地所有权由()代表国家行使。
国际债券的发行人主要有( )。
社区建设的基本原则有()。
一战后,法国政府在外交方面寻求的主要目标是()。
Whensomethingreflectslight,wecan______.What’sthebesttitle(题目)ofthispassage(短文)?
December25thisChristmasDay.ManyAmericansarebusywithChristmasandthewinterholidayseason.BuyingaChristmastreeis
最新回复
(
0
)