首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4维向量空间V的两个基分别为(Ⅰ)α1,α2,α3,α4;(Ⅱ)β1=α1+α2+α3,β2=α2+α3+α4,β3=α3+α4,β4=α4,求 在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量.
设4维向量空间V的两个基分别为(Ⅰ)α1,α2,α3,α4;(Ⅱ)β1=α1+α2+α3,β2=α2+α3+α4,β3=α3+α4,β4=α4,求 在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量.
admin
2021-02-25
138
问题
设4维向量空间V的两个基分别为(Ⅰ)α
1
,α
2
,α
3
,α
4
;(Ⅱ)β
1
=α
1
+α
2
+α
3
,β
2
=α
2
+α
3
+α
4
,β
3
=α
3
+α
4
,β
4
=α
4
,求
在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量.
选项
答案
设向量x在基(Ⅰ)和基(Ⅱ)下有相同的坐标,且坐标为x
1
,x
2
,x
3
,x
4
,则由坐标变换公式得 [*] 即 [*] 解得 [*] 于是得在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量为x=0α
1
+0α
2
+0α
3
+kα
4
,其中k为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/si84777K
0
考研数学二
相关试题推荐
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)一3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程
设f(χ)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f′(ξ)=-f(ξ)cotξ.
设f(χ)在[a,b]上连续且单调增加,证明:∫abχf(χ)dχ≥∫abf(χ)dχ.
n阶矩阵,求A的特征值和特征向量。
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
设四阶矩阵B满足,求矩阵B.
设f(x)为连续函数,试证明:若f(x)为奇函数,则f(x)的一切原函数均为偶函数;若f(x)为偶函数,则有且仅有一个原函数为奇函数.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
随机试题
医生的权利医务人员的道德义务
WhendidMr.Schallerbecomeinterestedinanimals?
地下水水质类型中,V类的适用功能是()
某电影院位于某地下人防工程(地下2层,地下二层的室内地面与室外出入口地坪高差为9m)的地下二层整层,建筑面积4200m2,设有1个大观众厅(建筑面积600m2),7个小观众厅(建筑面积均为300m2);共划分6个防火分区,其中大厅、售票区、展示区为一个防火
()年,中国人民银行颁布了《个人住房担保贷款管理试行办法》。
个人理财业务是建立在()基础上的银行服务。
甲股份有限公司(本题下称“甲公司”)为上市公司,2×15年至2×17年发生的相关交易或事项如下。(1)2×15年6月30日,甲公司就应收A公司账款8000万元与A公司签订债务重组合同。合同规定;A公司以其拥有的一栋在建写字楼及一项对乙公司的长期股权投资偿
“在整个社会主义初级和实现社会主义现代化的全过程中,都要坚持两手抓,两手都要硬的方针,绝不能一手硬一手软,也不能一段时间硬,一段时间软。”在这里,两手抓是指()。
某水果店只有进货价低于正常价格时,才能以低于市场的价格卖水果而获利;除非该水果店的销售量很大,否则,不能从果农那里购得低于正常价格的水果:要想有大的销售量,该水果店就要拥有特定品种水果的独家销售权。因为种种原因,该水果店没有得到特定品种水果的独家销售权。由
Studythefollowingdrawingcarefullyandwriteanessayinwhichyoushould1)describethedrawing,2)interpretitsm
最新回复
(
0
)