首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续可导,f(1)=0,∫01xfˊ(x)dx=2,证明:存在ξ∈[0,1],使得fˊ(ξ)=4.
设f(x)在[0,1]上连续可导,f(1)=0,∫01xfˊ(x)dx=2,证明:存在ξ∈[0,1],使得fˊ(ξ)=4.
admin
2022-01-17
43
问题
设f(x)在[0,1]上连续可导,f(1)=0,∫
0
1
xfˊ(x)dx=2,证明:存在ξ∈[0,1],使得fˊ(ξ)=4.
选项
答案
由分部积分,得 ∫
0
1
xfˊ(x)dx=xf(x)|
0
1
-∫
0
1
f(x)dx=-∫
0
1
f(x)dx=2, 于是∫
0
1
f(x)dx=-2. 由拉格朗日中值定理,得f(x)=f(x)-f(1)=fˊ(η)(x-1),其中η∈(x,1), f(x)=fˊ(η)(x-1)两边对x从0到1积分,得∫
0
1
f(x)dx=∫
0
1
fˊ(η)(x-1)dx=-2. 因为fˊ(x)在[0,1]上连续,所以fˊ(x)在[0,1]上取到最小值m和最大值M, 由M(x-1)≤fˊ(η)(x-1)≤m(x-1)两边对x从0到1积分, 得-[*]≤∫
0
1
fˊ(η)(x-1)dx≤-[*],即m≤4≤M, 由介值定理,存在ξ∈[0,1],使得fˊ(ξ)=4.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/sEf4777K
0
考研数学二
相关试题推荐
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是()
设f(x)为连续函数,,则F’(2)等于()
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是()
设A,B均为n阶矩阵,A可逆,且A~B,则下列命题中①AB~BA;②A2~B2;③AT~BT;④A—1~B—1。正确的个数为()
设f(χ),g(χ)(a<χ<b)为大于零的可导函数,且f′(χ)g(χ)-f(χ)g′(χ)<0,则当a<χ<b时,有().
设f(x)二阶可导,且f’(x)>0,f’’(x)>0,又△y=f(x+△x)-f(x),则当△x>0时有().
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f’’(x)≥k(k>0),则f(x)在(a,+∞)内的零点个数为().
极限的充要条件是()
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=()
曲线y=e—xsinx(0≤x≤3π)与x轴所围成图形的面积可表示为()
随机试题
活动室空间大小决定了活动区的()
给予水中毒病人3%~5%的氯化钠溶液的目的是
该患者最可能的诊断是如给予患者皮质激素类药物治疗,治疗作用为
医学实践中落实医学伦理学的尊重原则,表现是
下列各项除哪项外,均属消渴的变证
患者,男性,60岁。3年来走路、咳嗽或用力排便时反复出现右侧腹股沟肿块,呈椭圆形,平卧时肿块可消失。6小时前托举重物时肿块增大,局部剧痛,平卧和手推均不能回纳,肛门停止排便排气。诊断为腹外疝入院治疗。目前应紧急采取的治疗措施是
己知某笔贷款的年利率为8%,借贷双方的约定为按月计息,则该笔贷款的实际利率是()。
指导我国高等教育发展的基本理论基础为()。
我国的根本政治制度是()。
Afterintensiveresearch,scientistshaveconcludedthatpoliticianslie.InastudydescribedinBritain’sObservernewspap
最新回复
(
0
)