首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
admin
2017-10-21
75
问题
求常数a,使得向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(一2,a,4)
T
,β
3
=(一2,a,a)
T
线性表示,但是β
1
,β
2
,β
3
不可用α
1
,α
2
,α
3
线性表示.
选项
答案
本题的要求用秩来表达就是r(β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)>r(α
1
,α
2
,α
3
).由上面秩的关系式,得r(α
1
,α
2
,α
3
)<3,即α
1
,α
2
,α
3
线性相关,|α
1
,α
2
,α
3
|=0.求出|α
1
,α
2
,α
3
|=一(a一1)
2
(a+2),a=1或一2. a=1时,r(α
1
,α
2
,α
3
)=1,r(β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=3,符合要求。 a=一2时,r(α
1
,α
2
,α
3
)=r(β
1
,β
2
,β
3
)=2,不合要求.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/rpH4777K
0
考研数学三
相关试题推荐
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2—α3,α2+α3线性相关,则a=
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得。
证明不等式:xarctanx≥ln(1+x2).
设C1,C2是任意两条过原点的曲线,曲线C介于C1和C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=,求曲线C2的方程.
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
设方程组无解,则a=__________.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
设n维向量α1,α2,α3满足2α1一α2+3α3=0,对于任意的n维向量β,向量组l1β+α1,l1β+α2,l3β+α3都线性相关,则参数l1,l2,l3应满足关系________.
随机试题
治疗癫痫小发作有效:偶可引起再生障碍性贫血:
唇裂修复术的合适时间是
A.苯丙酸诺龙B.雌二醇C.炔雌醇D.雌酮E.炔诺酮结构为去甲睾酮的衍生物,具有蛋白同化激素样作用的药物是
已知则其饱和溶液中c(I-1)=()。
职业危害度评价所需要的基础资料可归纳为三个方面,即()。
实行会员分级结算制度的期货交易所应当配套建立结算担保金制度。结算担保金包括()。
A、 B、 C、 D、 D考虑内部图形与外部图形的接触点的个数。第一组图依次是2、3、5:第二组依次是1、4、(5)。其中2+3=5,1+4=(5)。
猪肉∶肥肉∶脂肪
设A=,B为三阶非零矩阵,且AB=O,则r(A)=___________.
当路由表中包含多种路由信息源时,根据缺省的管理距离值,路由器在转发数据包时,会选择的路由信息源是()。
最新回复
(
0
)