首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(a1,2,…,an)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m.存在常数t.使Am=tm-1A,并求出t;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
设α=(a1,2,…,an)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m.存在常数t.使Am=tm-1A,并求出t;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
admin
2019-02-23
55
问题
设α=(a
1
,
2
,…,a
n
)
T
是R
n
中的非零向量,方阵A=αα
T
.(1)证明:对正整数m.存在常数t.使A
m
=t
m-1
A,并求出t;(2)求一个可逆矩阵P,使P
-1
AP=A为对角矩阵.
选项
答案
(1)A
m
=(αα
T
)(αα
T
)…(αα
T
)=α(α
T
α)
m-1
α
T
=(α
T
α)
m-1
(αα
T
)=([*]a
i
2
)
m-1
A=t
m-1
A,其中t=[*]a
i
2
.(2)A≠O,[*]≤秩(A)=秩(αα
T
)≤秩(α)=1,[*]秩(A)=1,因实对称矩阵A的非零特征值的个数等于它的秩,故A只有一个非零特征值,而有n-1重特征值λ
1
=λ
2
=…=λ
n-1
=0.设a
1
≠0,由0E-A→A=[*],得属于特征值0的特征值可取为:ξ
1
=[*].由特征值之和等于A的主对角线元素之和,即0+0+…+0+λ
n
=[*]a
1
2
,得λ
n
=[*]a
i
2
=α
T
α,由Aα=(αα
T
)α=α(α
T
α)=αλ
n
=λ
n
α及α≠0,得与λ
n
对应特征向量为α,令P=[ξ
1
,ξ
2
,…,ξ
n-1
,α],则有P
-1
AP=diag(0,0,…,0,[*]a
i
2
)为对角阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/raj4777K
0
考研数学二
相关试题推荐
设z=z(x,y)由xyz=z+y+z确定,求
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
设f(χ)在(a,b)四次可导,χ0∈(a,b)使得f〞(χ0)=f″′(χ0)=0,又设f(4)(χ)>0(χ∈(a,b)),求证f(χ)在(a,b)为凹函数.
已知y1*=χeχ+e2χ,y2*=χeχ+eχ-χ,y3*=χeχ+e2χ-e-χ是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
求下列变限积分函数的导数:(Ⅰ)F(χ)=etdt,求F′(χ)(χ≥0);(Ⅱ)设f(χ)处处连续,又f′(0)存在,F(χ)=∫1χ[∫0tf(u)du]dt,求F〞(χ)(-∞<χ<-∞).
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小;
已知矩阵A与B相似,其中求a,b的值及矩阵P,使P一1AP=B。
计算下列反常积分(广义积分)。
若0≤x≤1,p>1,试证≤xp+(1一x)p≤1.
随机试题
关于非公开募集基金的托管,以下表述正确的是()。
简述所得额课税的征收制度。
(英语专业学生做)Individualism,independence,andself-relianceareperhapsthemostdistinctiveAmericancharacteristics.American
甲有限责任公司成立于2014年4月,注册资本为1000万元,文某是股东之一,持有40%的股权。文某已实缴其出资的30%,剩余出资按公司章程规定,应在2017年5月缴足。2015年12月,文某以其所持甲公司股权的60%作为出资,评估作价为200万元,与唐某共
模板及其支架在设计时应考虑的因素主要有()。
由强烈的精神刺激引发的幻觉是()。(2010年11月真题)
认为“领导是影响和支持其他人为了达到目标而富有热情地工作的过程”的是()。
Writeanessayof160-200wordsbasedonthepicturebelow.Inyouressay,youshould1)describethepicturebriefly,2
组成计算机硬件系统的基本部分是
Lookattheformbelow.Youwillhearthreemenintroducingeachotherbeforedinner.Mr.Blackcomesfrom(5)______Thepurp
最新回复
(
0
)