首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。 (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。 (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
admin
2017-12-29
96
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f
+
’
(0)存在,且f
+
’
(0)=A。
选项
答案
(Ⅰ)作辅助函数φ(x)=f(x)— f(a)一[*],易验证φ(x)满足: φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)— f(a)=f’(ξ)(b—a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在[*],使得 [*] 又由于[*]f’(x)=A,对(*)式两边取x
0
→0
+
时的极限 [*] 故f
+
’
(0)存在,且f
+
’
(0)=A。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/rUX4777K
0
考研数学三
相关试题推荐
设矩阵已知A的一个特征值为3,试求y;
设矩阵,矩阵X满足AX+E—A2+X,其中E为3阶单位矩阵,求矩阵X.
已知α1=[一1,1,a,4]T,α2=[一2,1,5,a]T,α3=[a,2,10,1]T是4阶方阵A的3个不同特征值对应的特征向量,则a的取值为()
设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且已知证明:函数φ(t)满足方程=3(1+t).
已知某商品的需求量D和供给量S都是价格p的函数;D=D(p)=,S=S(p)=bp,其中a>0和b>0为常数;价格p是时间t的函数且满足方程=k[D(p)一S(p)](k为正的常数).假设当t=0时价格为1,试求
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证:若x0∈(a,b),则对于(a,b)内的任何x,有f(x0)≥f(x)-f’(x0)(x-x0),当且仅当x=x0时等号成立;
设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为_____.
设f(x)有二阶连续导数,且(x0,f(x0))为曲线y=f(x)的拐点,则=()
证明不等式
随机试题
AIDS继发性中枢神经系统肿瘤:原发性淋巴瘤、Kaposi肉瘤。()
引起呕吐的原因有
牙周韧带的主纤维中,对垂直颌力起缓冲作用的主要是
某患者,男,有不洁性交史,2月前出现生殖器皮肤的无痛性溃疡,1个月后自然愈合,近日出现全身皮肤红疹,伴有淋巴结肿大,该患者可能患有何病
按照国家规定,大中型企业、事业单位应设置()来主管会计机构的全面工作。
零件的联接表面之间,在外力作用下,接触部位产生较大的接触应力而引起变形,即是零件的接触()较差。
采购预算方案制定的原则主要有()
简述发挥积极因素与克服消极因素相结合的原则。
(89年)在下列等式中,正确的结果是【】
与HTTP相比,HTTPS协议对传输的内容进行加密,更加安全。HTTPS基于(7)安全协议,其默认端口是(8)。(7)
最新回复
(
0
)