首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A为三阶实对称矩阵,A的秩为2,且 (1)求A的特征值与特征向量. (2)求矩阵A.
A为三阶实对称矩阵,A的秩为2,且 (1)求A的特征值与特征向量. (2)求矩阵A.
admin
2018-06-27
51
问题
A为三阶实对称矩阵,A的秩为2,且
(1)求A的特征值与特征向量.
(2)求矩阵A.
选项
答案
(1)由条件得A(1,2,-1)
T
=(-3,-6,3),A(1,0,1)
T
=(3,0,3),说明(1,2,-1)
T
和(1,0,1)
T
都是A的特征向量,特征值分别为-3和3. A的秩为2<维数3,于是0也是A的特征值. A的特征值为-3,3,0. 属于-3的特征向量为c(1,2,-1)
T
,c≠0. 属于3的特征向量为c(1,0,1)
T
,c≠0. 属于0的特征向量和(1,2,-1)
T
,(1,0,1)
T
都正交,即是方程组的非零解,解出属于0的特征向量为:c(-1,1,1)
T
,c≠0. (2)利用A的3个特征向量,建立矩阵方程求A. [*] 用初等变换法解得 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/r4k4777K
0
考研数学二
相关试题推荐
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程(ii)的解.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0(x∈(a,b)),求证:若在(a,b)单调增加,则在(a,b)单调增加.
(I)设k为正整数,证明F(x)存在唯一的零点,记为xk;(Ⅱ)证明存在,且其极限值小于2.
设f(x)在x=x0的某邻域内存在二阶导数,且则存在点(x0,f(x0))的左、右邻域U-与U+.()
一厂商经营两个工厂,生产同一种产品在同一市场销售,两个工厂的成本函数分别为C1=3Q12+2Q1+6,C2=2Q22+2Q2+4而价格函数为P=74-6Q,Q=Q1+Q2厂商追求最大利润.试确定每个工厂的产出.
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[*]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒为1
设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要作多少功?(假设在球从水中取出的过程中水面的高度不变.)
用配方法化下列二次型为标准形:f(x1,x2,x3)=x12+2x2x2-5x3x2+2x1x2-2x1x3+2x2x3.
已知函数f(x)在[0,]上连续,在(0,)内是函数的一个原函数,且f(0)=0.(Ⅰ)求f(x)在区间[0,]上的平均值;(Ⅱ)证明f(x)在区间(0,)内存在唯一零点.
设常数k>0,函数f(x)=lnx一+k在(0,+∞)内零点个数为
随机试题
患者,男,75岁,在家里突然昏倒,立即被送人医院,诊断为脑血管意外。其妻子告诉护士,他在发病前一直自服降压药控制高血压。患者逐渐恢复,为鼓励其自己进食,护士应采用的护理措施是
[2014年第61题]图5.13.10桁架由两根细长直杆组成,杆的截面尺寸相同,材料分别是结构钢和铸铁,在下列桁架中,布局比较合理的是()。
金融企业发放贷款取得的收入属于()。
活页账无论是在账簿登记完毕之前还是之后,账页都不固定装订在一起,而是装在活页账夹中。()
结构相对指标一般用百分数表示,其分子和分母只能是时期指标。()
甲公司系增值税一般纳税人,购入一套需安装的生产设备,取得的增值税专用发票上注明的价款为300万元,增值税税额为51万元,自行安装耗用材料20万元,发生安装人工费5万元。不考虑其他因素,该生产设备安装完毕达到预定可使用状态转入固定资产的入账价值为()
某公司现有6箱不同的水果,安排三个配送员送到A、B、C三个不同的仓储点,其中A地1箱,B地2箱,C地3箱,问配送方式有:
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
大学生在大学里要学习很多知识,小王是一名大学生,所以他学习了很多的知识。以下哪项论证中的推理错误与上述论证中的最为相似?
In1942,Americans(36)______severalimportantvictoriesovertheJapanese.TheUnitedStatesnavy(37)______apowerfulJapane
最新回复
(
0
)