首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f’’’(ξ)=3.
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f’’’(ξ)=3.
admin
2018-05-22
61
问题
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f’’’(ξ)=3.
选项
答案
由泰勒公式得 f(-1)=f(0)+f’(0)(-1-0)+[*](-1-0)
2
+[*](-1-0)
2
,ξ
1
∈(-1,0), f(1)=f(0)+f’(0)(1-0)+[*](1-)
2
+[*](1-0)
2
,ξ
2
∈(0,1), 即 [*] 两式相减得f’’(ξ
1
)+f’’(ξ
2
)=6. 因为f(x)在[-1,1]上三阶连续可导,所以f’’’(x)在[ξ
1
,ξ
2
]上连续,由连续函数最值定理,f’’’(x)在[ξ
1
,ξ
2
]上取到最小值m和最大值M,故2m≤f’’’(ξ
1
)+f’’’(ξ
2
)≤2M,即m≤3≤M. 由闭区间上连续函数介值定理,存在ξ∈[ξ
1
,ξ
2
][*](-1,1),使得f’’’(ξ)=3.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qvk4777K
0
考研数学二
相关试题推荐
(1997年试题,二)已知函数y=f(x)对一切x满足xf’’(x)+3x[f’(x)]2=1一e-x,若f’(x0)=0(x0≠0),则().
(2000年试题,二)设函数f(x),g(x)是大于零的可导函数,且f’(x)g(x)一f(x)g’(x)
(2001年试题,八)设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点.(1)试求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围成图形的面积最小.
(1997年试题,三(1))
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组的系数矩阵A的秩r(A)=2;(2)求a,b的值及方程组的通解.
设.(1)证明f(x)是以π为周期的周期函数;(2)求f(x)的值域.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(1)证明α1,α2,α3线性无关;(2)令P=(α1,α2,α3),求P-1AP.
若矩阵相似于对角阵A,试确定常数a的值;并求可逆矩阵P使P-1AP=A.
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.
随机试题
某病人因吞咽困难,舌肌萎缩伸舌不能,诊断为球麻痹,病变部位在()
在城镇基准地价评估过程中,下列关于基准地价内涵界定的说法中正确的是()。
下列不属于岩层产状的三个要素的是()。
下列不属于基金注册登记机构的主要职责的是()。
下列各项中,应当征收房产税的有()。
张女士为A市甲超市财务管理人员,她从2014年1月份开始建立家庭消费电子账,6月份从甲超市购买了下列商品:(1)粉底液一盒,支出400元。(2)白酒1000克,支出640元。(3)食品支出1010元,其中:橄榄油2500克,支出400元;淀粉1000
课程与教学内容组织的最基本标准包括()。(2014.河北)
同一感觉器官因不同刺激物的作用而引起感受性变化的现象是()
Lastweek29earnestAmericanhighschoolstudentswereinvitedtoaneveningofreceivinggoodwords,smalltalk,warmtoastsa
Myhometownhas______intooneofthemostbeautifulcitiesinChina.
最新回复
(
0
)