首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程 [(A)*]一1BA一1=2AB+4E,且A*α=α,其中α=[1,1,一1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程 [(A)*]一1BA一1=2AB+4E,且A*α=α,其中α=[1,1,一1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
admin
2018-04-18
89
问题
已知三元二次型X
T
AX经正交变换化为2y
1
2
一y
2
2
一y
3
2
,又知矩阵B满足矩阵方程
[(
A)
*
]
一1
BA
一1
=2AB+4E,且A
*
α=α,其中α=[1,1,一1]
T
,A
*
为A的伴随矩阵,求二次型X
T
BX的表达式.
选项
答案
由条件知A的特征值为2,一1,一1,则|A|=2,因为A
*
的特征值为[*],所以A
*
的特征值为1,一2,一2,由已知,α是A
*
关于λ=1的特征向量,也就是α是A关于λ=2的特征向量. 由[*]得2ABA
一1
=2AB+4E,即B=2(E一A)
一1
,则B的特征值为一2,1,1,且Bα=一2α.设B关于λ=1的特征向量为β=[x
1
,x
2
,x
3
]
T
,又B是实对称阵,α与β正交,故x
1
+x
2
一x
3
=0,解出β
1
=[1,一1,0]
T
,β
2
=[1,0,1]
T
,令 [*] 故X
T
BX=一2x
1
x
2
+2x
1
x
3
+2x
2
x
3
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qtk4777K
0
考研数学二
相关试题推荐
求微分方程y〞+5yˊ+6y=2e-x的通解.
函数y=x+2cosx在[0,π/2]上的最大值为________.
设函数f(x)=x.tanx.esinx,则f(x)是().
设曲线L位于xOy平面的第一象限内,L上任意_一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(3/2,3/2),求L的方程.
求极限.
若0<x1<x2<2,证明
求微分方程xdy+(x-2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设f(x)在[0,1]上连续且递减,证明:当0<λ<1时,
(2003年试题,十一)若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P使P-1AP=A
随机试题
行政法律责任中的行政处罚的形式有()
用人单位自用工之日起满多长时间不与劳动者订立书面劳动合同的,视为用人单位与劳动者已订立无固定期限劳动合同()
临床上多器官功能衰竭出现的顺序可能有先有后,下列有关描述中哪些是正确的
患者全身水肿而发亮,伴胸腹痞闷,烦热口渴,尿短赤,便干结,苔黄腻,脉沉数,宜选用何方
下列关于可转换公司债券叙述正确的是()
物质无非是各种物的总和,是从这种总和中抽象出来的。这种观点属于()。
下列各句中,没有歧义的一句是:
设离散型随机变量X的分布函数为Fx(x)=则Y=X2+1的分布函数为________.
本世纪将是一个以知识经济为主导的世纪,信息化、终身教育将成为社会发展的主旋律。
Inthepopularmind,theInternetistherealizationoftheglobalvillage,wheretheflowofinformationandideasisunimpeded
最新回复
(
0
)