首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 行列式==( ).
[2014年] 行列式==( ).
admin
2019-05-10
49
问题
[2014年] 行列式=
=( ).
选项
A、(ad—bc)
2
B、一(ad一bc)
2
C、a
2
d
2
一b
2
c
2
D、b
2
c
2
一a
2
d
2
答案
B
解析
待计算的行列式为数字型行列式,且元素排列有一定规律,应利用行列式性质将其变形化为能直接使用非零元素仅在主、次对角线上的2n阶或2n一1阶行列式计算:
=(a
1
a
2n
一b
1
b
2n
)(a
2
a
2n-1
—b
2
b
2n-1
)…(a
n
a
n+1
—b
n
b
n+1
),
=a
n
(a
n-1
a
n+1
一b
n-1
b
n+1
)(a
n-2
a
n+2
一b
n-2
b
n+2
)…(a
2n-1
a
1
一b
2n-1
一b
1
).
解一 令
.
此为非零元素仅在主、次对角线上的行列式,由式(2.1.1.5),即得
∣A∣=一(ad—bc)(ad—bc)=一(ad—bc)
2
.仅(B)入选.
解二 将∣A∣按第1行展开,然后可利用式(2.1.1.6)直接写出结果:
∣A∣=(一a)
=(一a)d(ad一bc)+bc(ad—bc)
=一(ad—bc)(ad—bc)=一(ad—bc)
2
.仅(B)入选.
转载请注明原文地址:https://www.kaotiyun.com/show/qjV4777K
0
考研数学二
相关试题推荐
设f(χ)二阶可导,=1且f〞(χ)>0.证明:当χ≠0时,f(χ)>χ.
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k.(1)证明:当k>0时,f(χ)在[a,b]上连续;(2)证明:当k>1时,f(χ)≡常数.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
设n阶矩阵A满足A2+A=3E,则(A-3E)-1=_______.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设抛物线y=aχ2+bχ+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=aχ2+bχ+c与抛物线y=-χ2+2χ所围图形的面积最小,求a,b,c的值.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设三阶矩阵A的特征值为2,3,λ,若行列式|2A|=-48,则λ=_______.
设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=_________。
随机试题
在德育管理过程中,精神激励比物质激励的效果更显著,影响更长久。()
邻近的地主:建在我们土地旁边的庞大的炼铝厂造成的空气污染正在杀死我们的作物。公司发言人:不应该怪罪炼铝厂,因为我们的研究表明,损害是由昆虫和细菌造成的。下面哪项如果正确,最严重地削弱了公司发言人得出的结论?
车削工件材料为中碳钢的普通内螺纹,计算孔径尺寸的近似公式为()。
在产品不计价法又称_________,是指不计算月末在产品成本的方法。如果企业各月末在产品数量很少,价值很低,且各月在产品数量比较稳定时,算不算在产品成本对完工产品成本的影响很小,对其成本可以忽略不计。
五行“相侮”,主要是指
男,40岁。感冒后,下唇及唇周皮肤出现成簇的针头大小的小水疱,破溃后结痂,局部灼痒疼痛。该患者患的疾病可能为
患者中年男性,周期性上腹痛多年,近半年来疼痛无周期性规律,并渐消瘦。胃镜见胃窦部有1个2cm×2.5cm大小的溃疡,边缘呈不规则隆起,质脆易出血,应首先考虑的是
以下哪种防水卷材的耐热度比较高?
某建筑公司兼营运输业务,本年度发生如下业务:(1)与甲建筑公司签订一项建筑承包合同,金额3500万元,又将该工程的一部分分包给乙建筑公司签订合同,分包金额1000万元。(2)3月31日,与丙企业签订一协议,公司承租丙企业设备1台,每月租赁费10万元
A、Scientists.B、Artgraduates.C、Children.D、Women.C
最新回复
(
0
)