首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=k∫01/kxe1-xf(x)dx,其中k>1。证明:存在ξ∈(0,1)使f’(ξ)=(1-)f(ξ)成立。
设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=k∫01/kxe1-xf(x)dx,其中k>1。证明:存在ξ∈(0,1)使f’(ξ)=(1-)f(ξ)成立。
admin
2019-07-24
44
问题
设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=k∫
0
1/k
xe
1-x
f(x)dx,其中k>1。证明:存在ξ∈(0,1)使f’(ξ)=(1-
)f(ξ)成立。
选项
答案
令g(y)=k∫
0
y
xe
1-x
f(x)dx,则g(0)=0,g(1/k)=f(1),由拉格朗日中值定理可知,存在η∈(0,1/k),使得 [*] 故kf(1)=kηe
1-η
f(η),即f(1)=ηe
1-η
f(η)。 再令φ(x)=xe
1-x
f(x),则φ(0)=0,φ(1)=f(1),所以φ(1)=f(1)=φ(η),由罗尔定理可知,存在ξ∈(η,1)[*](0,1),使得φ’(ξ)=0,即 ξe
1-ξ
[[*]f(ξ)-f(ξ)+f(’ξ)] 所以f’(ξ)=(1-[*])f(ξ)。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qgc4777K
0
考研数学一
相关试题推荐
求曲线在点M0(1,1,3)处的切线与法平面方程.
设f(x)连续,则在下列变上限积分中,必为偶函数的是()
设总体X~N(μ,σ2),其中σ2未知,s2=,样本容量n,则参数μ的置信度为1一α的置信区间为().
已知随机变量X~N(0,1),求:(Ⅰ)Y=的分布函数;(Ⅱ)Y=eX的概率密度;(Ⅲ)Y=|X|的概率密度.(结果可以用标准正态分布函数Ф(χ)表示)
某种内服药有使病人血压增高的副作用,已知血压的增高服从均值为μ0=22的正态分布.现研制出一种新药品,测试了10名服用新药病人的血压,记录血压增高的数据如下:18,27,23,15,18,15,18,20,17,8问这组数据能否支持“新
假设总体X的方差DX存在,X1,…,Xn是取自总体X的简单随机样本,其样本均值和样本方差分别为,S2,则EX2的矩估计量是
设α1,α2…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明:r(A-aE)+r(A-bE)=n.
求微分方程的通解。
设A是n阶矩阵,X是任意的n维列向量,B是任意的n阶方阵,则下列说法错误的是()
随机试题
病毒性肝炎中见明显碎片状坏死和桥接坏死的是
作为一份完整的租赁合同,本合同尚缺少()。合同中约定的争议解决方式()。
按照保险利益原则,下列哪些当事人的投保行为无效?
四位数字12.8、3.25、2.153、0.0284相加,结果应为()。
下列属于我国著名的素餐馆是()。
乔治.米勒对人们加工信息能力的研究报告指出:短时记忆的容量有一定限度,其平均数量为()。
注意的早期选择理论与后期选择理论的差异在于()
旁观者效应【上海师范大学2016】
有下列程序#include<stdio.h>int*f(int*s){s+=1;s[1]+=6;*s+++=7;returns;}main(){inta[5]={1,2,3,4,5},*p;p=f(&a[1]);printf("%
WriteonANSWEERSHEETTWOanoteofabout50~60wordsbasedonthefollowingsituation:Jane,yourclassmate,isthinkingo
最新回复
(
0
)