首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(98年)设矩阵A= 矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使.B与A相似;并求七为何值时,B为正定矩阵.
(98年)设矩阵A= 矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使.B与A相似;并求七为何值时,B为正定矩阵.
admin
2019-03-19
89
问题
(98年)设矩阵A=
矩阵B=(kE+A)
2
,其中k为实数,E为单位矩阵.求对角矩阵A,使.B与A相似;并求七为何值时,B为正定矩阵.
选项
答案
由|λE-A|=[*]=λ(λ-2)
2
=0 得A的特征值为λ
1
=λ
2
=2,λ
3
=0. 记对角矩阵 [*] 因A是实对称矩阵,故存在正交矩阵P,使得 P
-1
AP=P
T
AP=D 所以A=PDP
-1
于是 B=(kE+A)
2
=(kPP
-1
+PDP
-1
)
2
=[P(kE+D)P
-1
]
2
=P(kE+D)P
-1
P(kE+D)P
-1
=P(kE+D)
2
P
-1
=[*] 由此可得 [*] 亦可由A的特征值为:2,2,0,得kA+A的特征值为:k+2,k+2,k,进而得B=(kE+A)
2
的特征值为:(k+2)
2
,(k+2)
2
,k
2
,从而得实对称矩阵B相似于对角阵A. 由上面的结果立刻得到:当k≠-2,且k≠0时,B的特征值均为正数,这时B为正定矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qeP4777K
0
考研数学三
相关试题推荐
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y|0≤x≤1,0≤y≤1},计算二重积分I=xyfxy"(x,y)dxdy。
[*](e—2xarctanex+e—x+arctanex)+C
设f(u,υ)具有连续偏导数,且fu’(u,υ)+fυ’(u,υ)=sin(12+υ)eu+υ,求y(x)=e—2xf(x,x)所满足的一阶微分方程,并求其通解。
设函数f(x),g(x)具有二阶导数,且g"(x)<0。若g(x0)=a是g(x)的极值,则f[g(x)]在x0取极大值的一个充分条件是()
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c
求曲线y=cosx与x轴围成的区域绕x轴、y轴形成的几何体体积.
求y’’-2y’-e2x=0满足初始条件y(0)=1,y’(0)=1的特解.
设z=f[x-y+g(x-y-z)],其中f,g可微,求.
(1)求常数m,n的值,使得=3.(2)设当x→0时,x-(a+bcosx)sinx为x的5阶无穷小,求a,b.(3)设当x→0时,f(x)=ln(1+t)dt~g(x)=xa(ebx-1),求a,b.
设f(x)处处可导,则().
随机试题
慢性肾衰尿毒症时可发生
男性,52岁。有慢性乙型肝炎病20余年,近半年感觉恶心,食欲缺乏,乏力伴肝区疼痛,消瘦约5kg。体检:巩膜轻度黄染,胸部蜘蛛痣一个,肝肋下约2cm,剑突下4cm,质硬,边缘钝,脾肋下2cm,上腹部可听到血管杂音。ALT120U/L,AST250U/L,
从2011年开始到2012年底,全国县乡两级人大进行了换届选举。参加这次全国县级人大代表选举的选民达9亿多人,参加乡级人大代表选举的选民达6亿多人,共选举产生县乡两级人大代表200多万人,是人民当家作主的一次重要实践。关于县乡两级人民代表大会选举,说法正确
有关《唐律疏议》的下列选项中,正确的是()。
某汽车库位于地下二层,建筑面积3000m2,下列表述错误的是()。
某商场以“买一赠一”方式销售货物。本期销售A商品50台,每台售价(含税)23400元,同时赠送B商品50件(B商品不含税,单价为1200元/件)。A、B商品适用税率均为17%。该商场此项业务应申报的销项税额是()元。
在确定境外经营(子公司)的记账本位币时,应当考虑的因素有()。
A公司2020年1月份现金收支的预计资料如下:(1)1月1日的现金(包括银行存款)余额为54100元。(2)产品售价8元/件。2019年11月销售20000件,2019年12月销售30000件,2020年1月预计销售40000件,2月预计销售25000
下列有关职业怀疑的说法中,正确的有()。
我国的能源现状可以概括为()。
最新回复
(
0
)