首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个非零矩阵A=[b1,b2,…,an]T,B=[b1,b2,…,bn]T. (1)计算ABT与ATB; (2)求矩阵ABT的秩r(ABT); (3)设C=E-ABT,其中E为n阶单位矩阵.证明:
设有两个非零矩阵A=[b1,b2,…,an]T,B=[b1,b2,…,bn]T. (1)计算ABT与ATB; (2)求矩阵ABT的秩r(ABT); (3)设C=E-ABT,其中E为n阶单位矩阵.证明:
admin
2019-02-26
32
问题
设有两个非零矩阵A=[b
1
,b
2
,…,a
n
]
T
,B=[b
1
,b
2
,…,b
n
]
T
.
(1)计算AB
T
与A
T
B;
(2)求矩阵AB
T
的秩r(AB
T
);
(3)设C=E-AB
T
,其中E为n阶单位矩阵.证明:
选项
答案
(1)AB
T
= [*] A
T
B=a
1
b
1
+a
2
b
2
+…+a
n
b
n
. (2)因AB
T
各行(列)是第1行(列)的倍数,又A,B皆为非零矩阵,故r(AB
T
)=1. (3)由于C
T
C=(E-AB
T
)
T
(E-AB
T
)=(E-BA
T
)(E-AB
T
)=E-BA
T
-AB
T
+ BA
T
AB
T
,故若要求C
T
C=E-BA
T
-AB
T
+BB
T
,则BA
T
AB
T
-BB
T
=O,B(A
T
A-1)B
T
=O,即 (A
T
A-1)BB
T
=0. 因为B≠0,所以BB
T
≠O.故C
T
C=E-BA
T
-AB
T
+BB
T
的充要条件是A
T
A=1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qL04777K
0
考研数学一
相关试题推荐
设(I)当a,b为何值时,β不可由α1,α2,α3线性表示;(Ⅱ)当a,b为何值时,β可由α1,α2,α3线性表示,写出表达式.
设f(x)在[0,1]上连续可导,f(1)=0,∫01f’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
设函数f(x,y)在(2,一2)处可微,满足f(sin(xy)+2cosx,xy一2cosy)=1+x2+y2+o(x2+y2),这里o(x2+y2)表示比x2+y2高阶的无穷小(x,y)→(0,0)时),试求曲面z=f(x,y)在点(2,一2
计算二重积分|x2+y2一1|dσ,其中D={(x,y)|0≤x≤1,0≤y≤1}.
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则下列服从相应区间或区域上均匀分布的是
(2013年)设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω。(I)求曲面∑的方程;(Ⅱ)求Ω的形心坐标。
(2005年)设D={(x,y)|x2+y2≤x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数。计算二重积分
总体X的概率密度为f(x;σ)=σ∈(0,+∞),一∞<x<+∞,X1,X2,…,Xn为来自总体X的简单随机样本.(I)求σ的极大似然估计.(Ⅱ)求.
已知函数y=,试求其单调区间、极值以及函数图形的凹凸区间、拐点和渐近线,并画出函数的图形。
写了n封信,但信封上的地址是以随机的次序写的,设Y表示地址恰好写对的信的数目,求EY,及DY.
随机试题
A.益火补土B.金水相生C.培土生金D.抑木扶土以泄肝健脾法治疗肝旺脾虚证的治法称
患者男,18岁。淋雨后感冒,1天后出现寒战、高热,痰液为铁锈色,诊断为肺炎链球菌肺炎,体温持续在39℃~40℃,患者的热型呈
某公司进口涤纶样品一包,经海关审定其完税价格为人民币1400元,涤纶的关税税率为15%。海关应征进口关税税款是()。
甲乙双方订立买卖合同,约定收货后一周内付款。甲方在交货前发现乙方经营状况严重恶化,根据合同法律制度的规定,甲方()。(2000年)
从法律方面分析,对旅游纠纷特征描述不正确的是()。
【2012年福建.单选】个性心理特征中具有核心意义的是()。
下列各句中,没有语病的一句是______。
WhatkindofoverviewdoesthebookintendtogiveaboutAmericansociety?
Ishappinessproportionaltoincome—tothemoneyapersonhas?Isamanwithtworoomsandloavesofbreadhappierthanaman
SpeakerA:So,what’sthestatusofouradvertisingcampaign?SpeakerB:AsImentionedbefore,it’llbeanationalcampaign
最新回复
(
0
)