首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出如下5个命题: (1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞
给出如下5个命题: (1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞
admin
2019-02-23
54
问题
给出如下5个命题:
(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x
0
≠0是f(x)的极大值点,则一x
0
必是一f(一x)的极大值点;
(2)设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,则F(x)=
在(a,+∞)内单调增加;
(3)若函数f(x)对一切x都满足xf’’(x)+3x[f’(x)]
2
=1一e
-x
,且f’(x
0
)=0,x
0
≠0,则f(x
0
)是f(x)的极大值;
(4)设函数y=y(x)由方程2y
3
一2y
2
+2xy—x
2
=1所确定,则y=y(x)的驻点必定是它的极小值点;
(5)设函数f(x)=xe
x
,则它的n阶导数f
(n)
(x)在点x
0
=一(n+1)处取得极小值.正确命题的个数为 ( )
选项
A、2
B、3
C、4
D、5
答案
B
解析
对上述5个命题一一论证.对于(1),只要注意到:若f(x)在点x
0
取到极大值,则一f(x)必在点x
0
处取到极小值,故该结论错误;对于(2),对任意x>a,由拉格朗日中值定理知,存在ξ∈(a,x)使f(x)-f(a)=G878=f’(ξ)(x-a),则
由f’’(x)>0知,f’(x)在(a,+∞)内单调增加,因此,对任意的x与ξ,a<ξ<x,有f’(x)>f’(ξ),从而由上式得F’(x)>0,所以函数F(x)在(a,+∞)内单调增加,该结论正确;对于(3),因f’(x
0
)=0,故所给定的方程为
,显然,不论x
0
>0,还是x
0
<0,都有f’’(x
0
)>0,于是由f’(x
0
)=0与f’’(x
0
)>0得f(x
0
)是f(x)的极小值,故该结论错误;对于(4),对给定的方程两边求导,得3y
2
y’一2yy’+xy’+xy’—x=0, ①
再求导,得(3y
2
一2y+z)y’’+(6y一2)(y’)
2
+2y’=1. ②
令y’=0,则由式①得y=x,再将此代入原方程有2x
3
一x
2
=1,从而得y—y(x)的唯一驻点x
0
=1,因x
0
=1时y
0
=1,把它们代入式②得y’’|
(1,1)
>0,所以唯一驻点x
0
=1是y=y(x)的极小值点,该结论正确;对于(5),因为是求n阶导数f
(n)
(x)的极值问题,故考虑函数f(x)=xe
x
的n+1阶导数f
(n+1)
(x),由高阶导数的莱布尼茨公式得f
(n)
(x)=x(e
x
)
(n)
+x(e
x
)
(n-1)
=(x+n)e
x
,f
(n+1)
(x)=[x+(n+1)]e
x
;f
(n+2)
(x)=[x+(n+2)]e
x
.令f
(n+1)
(x)=0,得f
(n)
(x)的唯一驻点x
0
=一( n+1);又因f
(n+2 )
(x
0
)=e
-(n+1)
>0,故点x
0
=一(n+1)是n阶导数f
(n)
(x)的极小值点,且其极小值为f
(n)
(x)=一e
-(n+1)
,该结论正确.故正确命题一共3个,答案选择B.
转载请注明原文地址:https://www.kaotiyun.com/show/qB04777K
0
考研数学一
相关试题推荐
设总体X的均值E(X)=μ,方差D(X)=σ2,(X1,X2,…,Xn)为取自X的一个简单随机样本,求Xi-的相关系数ρ(i≠j;i,j=1,2,…,n).
改变积分次序并计算.
设n>1,n元齐次方程组AX=0的系数矩阵为(1)讨论a为什么数时AX=0有非零解?(2)在有非零解时求通解.
设μ=μ(x,y)由方程组μ=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且.
设函数f(x)可导,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2-x垂直,则当△x→0时,该函数在x=x0处的微分dy是()
令A=[*],则(Ⅰ)可写为AX=0,[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(Ⅰ)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…Aβn=0[*]A(β1,β2,…,βn)=[*]α1T,α2T,…,α
求曲面积分I=(x+cosy)dydz+(y+cosz)dzdx+(z+cosx)dxdy,其中S为x+y+z=π在第一卦限部分,取上侧.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设X服从于参数为λ=5的泊松分布,即P{X=k}=,则当k=()时,P{X=k}最大
随机试题
微小胃癌是指()
肺毛细管楔压(PCWP)的正常值是()
阿司匹林杂质中,能引起过敏反应的是
尽管各个企业由于经济业务的差别,所设置的账簿种类会有所不同,但所有企业必须设置()。
(2011年)下列有关城市维护建设税的说法,正确的有()。
以下说法正确的有()。
古希腊的音乐体裁包含哪些?
根据下列统计资料回答问题。2015年l—3月,G市A区全区完成固定资产投资84.17亿元,同比增长6.1%,增速比去年同期回落4.3个百分点。其中,房地产开发投资31.52亿元,同比增长1.6倍。分产业来看,第二产业完成投资0.54亿元,同比
项目风险识别是指找出影响项目目标顺利实现的主要风险因素,并识别出这些风险究竟有哪些基本特征、可能会影响到项目的哪些方面等问题。以下关于项目风险识别的叙述中,正确的是:()。
WLAN技术使用的传输介质是______。
最新回复
(
0
)