首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设P(χ),q(χ),f(χ)均是关于χ的连续函数,y1(χ),y2(χ),y3(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的3个线性无关的解,C1与C2是两个任意常数,则该非齐次线性微分方程的通解为( )
设P(χ),q(χ),f(χ)均是关于χ的连续函数,y1(χ),y2(χ),y3(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的3个线性无关的解,C1与C2是两个任意常数,则该非齐次线性微分方程的通解为( )
admin
2017-11-30
71
问题
设P(χ),q(χ),f(χ)均是关于χ的连续函数,y
1
(χ),y
2
(χ),y
3
(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的3个线性无关的解,C
1
与C
2
是两个任意常数,则该非齐次线性微分方程的通解为( )
选项
A、(C
1
+C
2
)y
1
+(C
2
-C
1
)y
2
+(1-C
2
)y
3
B、(C
1
+C
2
)y
1
+(C
2
-C
1
)y
2
+(C
1
-C
2
)y
3
C、C
1
y
1
+(C
2
-C
1
)y
2
+(1-C
2
)y
3
D、C
1
y
1
+(C
2
-C
1
)y
2
+(C
1
-C
2
)y
3
答案
C
解析
将选项C改写为C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
3
。作为非齐次方程的解,只需要满足C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)是对应的齐次方程组的通解,因此只需要证明(y
1
-y
2
)与(y
2
-y
3
)线性无关即可。
假设(y
1
-y
2
)与(y
2
-y
3
)线性相关,即存在不全为零的数k
1
和k
2
使得
k
1
(y
1
-y
2
)+k
2
(y
2
-y
3
)=0,
即k
1
y
1
+(k
2
-k
1
)y
2
-k
2
y
3
=0。
由于y
1
,y
2
,y
3
线性无关,则根据上式可得k
1
=k
2
=0,与k
1
和k
2
不全为零矛盾,因此(y
1
-y
2
)与(y
2
-y
3
)线性无关,可见选项C是非齐次微分方程的通解。故选C。
转载请注明原文地址:https://www.kaotiyun.com/show/Kyr4777K
0
考研数学一
相关试题推荐
反常积分
本题考查典型的有理函数的不定积分,首先凑微分,然后将分母配方.[*]
积分
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
计算曲线积分其中L圆周(x一1)2+y2=2,其方向为逆时针方向.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设,α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=求方程组(Ⅱ)BX=0的基础解系;
求过直线且与点(1,2,1)的距离为1的平面方程.
设直线求L绕y轴旋转一周所成曲面的方程.
设二次型f(x,x,x)=-2x1x2-2x1x3+2ax2x3通过正交变换化为标准形f=,求常数a,b及所用正交变换矩阵Q.
随机试题
甲状腺肿瘤患者手术后出现声音嘶哑可能是损伤了【】
精神崩溃的表现是
下列表述中,对于科目汇总表账务处理程序表述正确的有()。
我国古代医书《内经》中就有“怒伤肝、喜伤心、思伤脾、忧伤肺、恐伤肾”的记载,这说明情绪情感具有()。
根据下列材料,回答下列问题。为了研究儿童看电视与其阅读技能发展的关系,某心理学家分别以6、7、8、9岁四组儿童为研究对象,考察了他们6个月看电视的平均时间。随后,心理学家让这些儿童参加了相同的阅读速度和阅读理解测试。积差相关结果如下表所示:
随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX|Y(x|y)为().
[A]Crisisseemsfar[B]Thefirmisatrisk[C]Morerivalsjoinin[D]Naturalfoodsareunreal[E]Stopbuyin
在面向对象系统中,用(12)关系表示一个较大的“整体”类包含一个或多个较小的“部分”类。
Youwillhearpartofatalktoagroupofbusinessstudentsaboutthefateoflegendarycarbrands.Asyoulisten,forques
Youknowher—thatniceteenageracrossthestreet?Chloe.Theresheis,sittinginoneofthetwocaptain’sseatsinthemidsect
最新回复
(
0
)