首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
数形结合思想是一种重要的数学思想,它的实质就是根据数与形之间的对应关系,通过数与形的相互转化来解决问题。数形结合思想能简化推理和运算,具有直观、快捷的优点。请谈谈数形结合思想在解哪些类型的问题时可以发挥作用。
数形结合思想是一种重要的数学思想,它的实质就是根据数与形之间的对应关系,通过数与形的相互转化来解决问题。数形结合思想能简化推理和运算,具有直观、快捷的优点。请谈谈数形结合思想在解哪些类型的问题时可以发挥作用。
admin
2022-08-05
100
问题
数形结合思想是一种重要的数学思想,它的实质就是根据数与形之间的对应关系,通过数与形的相互转化来解决问题。数形结合思想能简化推理和运算,具有直观、快捷的优点。请谈谈数形结合思想在解哪些类型的问题时可以发挥作用。
选项
答案
(1)在解方程或不等式的问题中,若方程或不等式中的代数式能拆分成一次函数、二次函数、对数函数、指数函数和三角函数等形式,则一般可利用函数的图像直观地使问题获得解决。例如,二次函数根的分布、解高次不等式、函数零点问题等。 (2)复数、三角函数、向量等概念的建立离不开直角坐标系,因此这些概念含有明显的几何意义,采用数形结合解决此类问题非常直观清晰。 (3)在平面几何、解析几何和立体几何的问题中,都需要结合具体的图形,用数形结合的思想来解决问题。 (4)二元二次方程能与直线、二次曲线相对应,用数形结合的思想方法解决此类问题,能在解题过程中充分利用解析几何的知识,使解题思路更开阔。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/q4tv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
请从伦理学的角度简要分析国家利益与个人利益的关系。
经过60多年发展,中国航天事业成就辉煌。中国航天事业离不开国力的增强、技术的进步,也离不开几代航天人的执着追求。这启示我们()。①发展航天事业要遵循客观经济规律②航天实践具有客观物质性和能动性③实现航天梦想取决于发扬航天精神④航天事业需要不
中国国画以意境见长,在长期发展进程中,受到其他民族和国家绘画不同程度的影响,自“六朝”以来,中国国画在印度绘画的影响下,内容与形式发生较大变化;近现代受西方油画的影响更大于受印度绘画的影响。但中国国画的民族特色并没有因此荡然无存,而是在交流互鉴中更好地保持
某食品有限公司涉嫌使用过期原料生产加工食品,受该事件影响,该食品占有限公司的销售业绩明显下滑。这说明()。
中国籍散货轮“德新海”轮在印度洋被海盗武装劫持,这一事件再次将全球目光吸引到这片号称世界上最危险的海域上。要彻底铲除索马里附近海域海盗,仅靠武力是不够的,处理好国家、地区间经济发展的不平衡问题更具有深层次意义,这体现了()。
求过点A(1,一2)的所有直线被圆x2+y2=5截得线段中点的轨迹方程。
设a、b为实数,0<0<b,证明在开区间(a,b)中存在有理数(提示取<b—a)。
已知定义域为R的函数f(x)在(8,+∞)上为减函数,且函数y=f(x+8)为偶函数,则()。
案例:阅读下列两个教师有关有理数乘方的教学片段。甲教师导入的教学过程:教师甲在大屏幕上依次呈现问题1(已知正方形的边长为a,则它的面积是多少?)和问题2(已知正方体的棱长为a,则它的体积是多少?)。待同学回答后,教师出示结果:边长为a的
已知事件A的概率P(A)=0.6,则A的对立事件等于()。
随机试题
学校管理中介
正式沟通与非正式沟通属于________。
妊娠合并甲亢患者,孕多少周内可以用放射性碘进行诊断和治疗:
毕Ⅰ式胃大部切除术的优点为
患者女,25岁,近来发热、乏力、体重下降、关节肌肉疼痛来院就诊。查体:面部可见紫红色蝶形红斑,Sm抗体阳性。本病患者治疗首选药物是
下列房地产投资项目经济评价基础参数中,属于收益相关指标的是()
税收的本质决定了他具有()的特征。
材料用量的控制包括()。
一般地说,劳动争议的解决机制包括()。
一元二次方程x2-4x+2=0的根的情况是().
最新回复
(
0
)