首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为______。
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为______。
admin
2018-04-08
50
问题
设A为二阶矩阵,α
1
,α
2
为线性无关的二维列向量,Aα
1
=0,Aα
2
=2α
1
+α
2
,则A的非零特征值为______。
选项
答案
1
解析
由Aα
1
=0,Aα
2
=2α
1
+α
2
,可知A(2α
1
+α
2
)=2α
1
+α
2
,由于α
1
,α
2
线性无关,故2α
1
+α
2
≠0,则由特征值、特征向量的定义可知:1为矩阵A的特征值,2α
1
+α
2
是对应的特征向量。
又由Aα
1
=0可知,0是矩阵A的特征值,α
1
是对应的特征向量。由于A为二阶矩阵,仅有两个特征值,可知A不再有其他特征值,故A的非零特征值为1。
转载请注明原文地址:https://www.kaotiyun.com/show/plr4777K
0
考研数学一
相关试题推荐
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明:矩阵Q可逆的充分必要条件是αTA一α≠b.
=__________
设f(x)为不恒等于零的奇函数,且f’(0)存在,则函数g(x)=
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…).证明存在,并求该极限;
曲线sin(xy)+ln(y-x)=x在点(0,1)处的切线方程是__________.
计算曲面积分4zxdydz-2zydzdx+(1-z2)dxdy,其中S为z=ey(0≤y≤a)绕z轴旋转成的曲面下侧。
已知随机变量X的概率分布P(X=k)=,其中λ>0,k=1,2,…,则E(X)为()。
设二维随机变量(X,Y)服从区域-1≤x≤1,0≤y≤2上的均匀分布,求二次曲面x12+2x22+Yx32+2x1x2+2Xx1x3=1为椭球面的概率。
A,B是n阶方阵,则下列公式正确的是()
随机试题
在靶细胞内具有第二信使作用的物质是
A.2B.3C.4D.5E.6伤寒出现皮疹的时间是病后第几天
A.鸣管B.鸣囊C.鸣膜D.呜骨E.鸣泡禽类的发音器官鸣管是由数个气管环以及一块()组成
陈某在8月1日向李某发出一份传真,出售房屋一套,面积90平方米,价款260万元,合同订立7日内一次性付款,如欲购买请在3日内回复,李某当日传真回复,表示同意购买,但要求分期付款,陈某未回复。8月3日李某再次给陈某发传真,表示同意按照陈某传真的条件购买,
“数量积等于零的两个向量平行",这个命题是__________(填“真”或“假”)命题.
培养学生探究态度与能力的课程是()。
“十一”期间某游乐场推出儿童免门票的活动,成人和儿童入园数量都比“十一”前翻了一番,入园总人数达到3000人,门票收入则增加了六成。已知成人票每张200元,儿童票每张100元,则“十一”期间门票收入为多少?
【B1】【B10】
Basedonthislecture,whatcanweinferaboutthefutureofmarinemammals?
Technologyisanothergreatforceforchange.Inpart,technologyhascausedthepopulationexplosion;manyofuswon’tnowbea
最新回复
(
0
)